ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smores2 GIF version

Theorem smores2 6361
Description: A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.)
Assertion
Ref Expression
smores2 ((Smo 𝐹 ∧ Ord 𝐴) → Smo (𝐹𝐴))

Proof of Theorem smores2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsmo2 6354 . . . . . . 7 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
21simp1bi 1014 . . . . . 6 (Smo 𝐹𝐹:dom 𝐹⟶On)
3 ffun 5413 . . . . . 6 (𝐹:dom 𝐹⟶On → Fun 𝐹)
42, 3syl 14 . . . . 5 (Smo 𝐹 → Fun 𝐹)
5 funres 5300 . . . . . 6 (Fun 𝐹 → Fun (𝐹𝐴))
6 funfn 5289 . . . . . 6 (Fun (𝐹𝐴) ↔ (𝐹𝐴) Fn dom (𝐹𝐴))
75, 6sylib 122 . . . . 5 (Fun 𝐹 → (𝐹𝐴) Fn dom (𝐹𝐴))
84, 7syl 14 . . . 4 (Smo 𝐹 → (𝐹𝐴) Fn dom (𝐹𝐴))
9 df-ima 4677 . . . . . 6 (𝐹𝐴) = ran (𝐹𝐴)
10 imassrn 5021 . . . . . 6 (𝐹𝐴) ⊆ ran 𝐹
119, 10eqsstrri 3217 . . . . 5 ran (𝐹𝐴) ⊆ ran 𝐹
12 frn 5419 . . . . . 6 (𝐹:dom 𝐹⟶On → ran 𝐹 ⊆ On)
132, 12syl 14 . . . . 5 (Smo 𝐹 → ran 𝐹 ⊆ On)
1411, 13sstrid 3195 . . . 4 (Smo 𝐹 → ran (𝐹𝐴) ⊆ On)
15 df-f 5263 . . . 4 ((𝐹𝐴):dom (𝐹𝐴)⟶On ↔ ((𝐹𝐴) Fn dom (𝐹𝐴) ∧ ran (𝐹𝐴) ⊆ On))
168, 14, 15sylanbrc 417 . . 3 (Smo 𝐹 → (𝐹𝐴):dom (𝐹𝐴)⟶On)
1716adantr 276 . 2 ((Smo 𝐹 ∧ Ord 𝐴) → (𝐹𝐴):dom (𝐹𝐴)⟶On)
18 smodm 6358 . . 3 (Smo 𝐹 → Ord dom 𝐹)
19 ordin 4421 . . . . 5 ((Ord 𝐴 ∧ Ord dom 𝐹) → Ord (𝐴 ∩ dom 𝐹))
20 dmres 4968 . . . . . 6 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
21 ordeq 4408 . . . . . 6 (dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹) → (Ord dom (𝐹𝐴) ↔ Ord (𝐴 ∩ dom 𝐹)))
2220, 21ax-mp 5 . . . . 5 (Ord dom (𝐹𝐴) ↔ Ord (𝐴 ∩ dom 𝐹))
2319, 22sylibr 134 . . . 4 ((Ord 𝐴 ∧ Ord dom 𝐹) → Ord dom (𝐹𝐴))
2423ancoms 268 . . 3 ((Ord dom 𝐹 ∧ Ord 𝐴) → Ord dom (𝐹𝐴))
2518, 24sylan 283 . 2 ((Smo 𝐹 ∧ Ord 𝐴) → Ord dom (𝐹𝐴))
26 resss 4971 . . . . . 6 (𝐹𝐴) ⊆ 𝐹
27 dmss 4866 . . . . . 6 ((𝐹𝐴) ⊆ 𝐹 → dom (𝐹𝐴) ⊆ dom 𝐹)
2826, 27ax-mp 5 . . . . 5 dom (𝐹𝐴) ⊆ dom 𝐹
291simp3bi 1016 . . . . 5 (Smo 𝐹 → ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))
30 ssralv 3248 . . . . 5 (dom (𝐹𝐴) ⊆ dom 𝐹 → (∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥) → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
3128, 29, 30mpsyl 65 . . . 4 (Smo 𝐹 → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))
3231adantr 276 . . 3 ((Smo 𝐹 ∧ Ord 𝐴) → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))
33 ordtr1 4424 . . . . . . . . . . 11 (Ord dom (𝐹𝐴) → ((𝑦𝑥𝑥 ∈ dom (𝐹𝐴)) → 𝑦 ∈ dom (𝐹𝐴)))
3425, 33syl 14 . . . . . . . . . 10 ((Smo 𝐹 ∧ Ord 𝐴) → ((𝑦𝑥𝑥 ∈ dom (𝐹𝐴)) → 𝑦 ∈ dom (𝐹𝐴)))
35 inss1 3384 . . . . . . . . . . . 12 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
3620, 35eqsstri 3216 . . . . . . . . . . 11 dom (𝐹𝐴) ⊆ 𝐴
3736sseli 3180 . . . . . . . . . 10 (𝑦 ∈ dom (𝐹𝐴) → 𝑦𝐴)
3834, 37syl6 33 . . . . . . . . 9 ((Smo 𝐹 ∧ Ord 𝐴) → ((𝑦𝑥𝑥 ∈ dom (𝐹𝐴)) → 𝑦𝐴))
3938expcomd 1452 . . . . . . . 8 ((Smo 𝐹 ∧ Ord 𝐴) → (𝑥 ∈ dom (𝐹𝐴) → (𝑦𝑥𝑦𝐴)))
4039imp31 256 . . . . . . 7 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → 𝑦𝐴)
41 fvres 5585 . . . . . . 7 (𝑦𝐴 → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
4240, 41syl 14 . . . . . 6 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
4336sseli 3180 . . . . . . . 8 (𝑥 ∈ dom (𝐹𝐴) → 𝑥𝐴)
44 fvres 5585 . . . . . . . 8 (𝑥𝐴 → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
4543, 44syl 14 . . . . . . 7 (𝑥 ∈ dom (𝐹𝐴) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
4645ad2antlr 489 . . . . . 6 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
4742, 46eleq12d 2267 . . . . 5 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → (((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥) ↔ (𝐹𝑦) ∈ (𝐹𝑥)))
4847ralbidva 2493 . . . 4 (((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) → (∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥) ↔ ∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
4948ralbidva 2493 . . 3 ((Smo 𝐹 ∧ Ord 𝐴) → (∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥) ↔ ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
5032, 49mpbird 167 . 2 ((Smo 𝐹 ∧ Ord 𝐴) → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥))
51 dfsmo2 6354 . 2 (Smo (𝐹𝐴) ↔ ((𝐹𝐴):dom (𝐹𝐴)⟶On ∧ Ord dom (𝐹𝐴) ∧ ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥)))
5217, 25, 50, 51syl3anbrc 1183 1 ((Smo 𝐹 ∧ Ord 𝐴) → Smo (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  cin 3156  wss 3157  Ord word 4398  Oncon0 4399  dom cdm 4664  ran crn 4665  cres 4666  cima 4667  Fun wfun 5253   Fn wfn 5254  wf 5255  cfv 5259  Smo wsmo 6352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-tr 4133  df-iord 4402  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-smo 6353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator