ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smores2 GIF version

Theorem smores2 6191
Description: A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.)
Assertion
Ref Expression
smores2 ((Smo 𝐹 ∧ Ord 𝐴) → Smo (𝐹𝐴))

Proof of Theorem smores2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsmo2 6184 . . . . . . 7 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
21simp1bi 996 . . . . . 6 (Smo 𝐹𝐹:dom 𝐹⟶On)
3 ffun 5275 . . . . . 6 (𝐹:dom 𝐹⟶On → Fun 𝐹)
42, 3syl 14 . . . . 5 (Smo 𝐹 → Fun 𝐹)
5 funres 5164 . . . . . 6 (Fun 𝐹 → Fun (𝐹𝐴))
6 funfn 5153 . . . . . 6 (Fun (𝐹𝐴) ↔ (𝐹𝐴) Fn dom (𝐹𝐴))
75, 6sylib 121 . . . . 5 (Fun 𝐹 → (𝐹𝐴) Fn dom (𝐹𝐴))
84, 7syl 14 . . . 4 (Smo 𝐹 → (𝐹𝐴) Fn dom (𝐹𝐴))
9 df-ima 4552 . . . . . 6 (𝐹𝐴) = ran (𝐹𝐴)
10 imassrn 4892 . . . . . 6 (𝐹𝐴) ⊆ ran 𝐹
119, 10eqsstrri 3130 . . . . 5 ran (𝐹𝐴) ⊆ ran 𝐹
12 frn 5281 . . . . . 6 (𝐹:dom 𝐹⟶On → ran 𝐹 ⊆ On)
132, 12syl 14 . . . . 5 (Smo 𝐹 → ran 𝐹 ⊆ On)
1411, 13sstrid 3108 . . . 4 (Smo 𝐹 → ran (𝐹𝐴) ⊆ On)
15 df-f 5127 . . . 4 ((𝐹𝐴):dom (𝐹𝐴)⟶On ↔ ((𝐹𝐴) Fn dom (𝐹𝐴) ∧ ran (𝐹𝐴) ⊆ On))
168, 14, 15sylanbrc 413 . . 3 (Smo 𝐹 → (𝐹𝐴):dom (𝐹𝐴)⟶On)
1716adantr 274 . 2 ((Smo 𝐹 ∧ Ord 𝐴) → (𝐹𝐴):dom (𝐹𝐴)⟶On)
18 smodm 6188 . . 3 (Smo 𝐹 → Ord dom 𝐹)
19 ordin 4307 . . . . 5 ((Ord 𝐴 ∧ Ord dom 𝐹) → Ord (𝐴 ∩ dom 𝐹))
20 dmres 4840 . . . . . 6 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
21 ordeq 4294 . . . . . 6 (dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹) → (Ord dom (𝐹𝐴) ↔ Ord (𝐴 ∩ dom 𝐹)))
2220, 21ax-mp 5 . . . . 5 (Ord dom (𝐹𝐴) ↔ Ord (𝐴 ∩ dom 𝐹))
2319, 22sylibr 133 . . . 4 ((Ord 𝐴 ∧ Ord dom 𝐹) → Ord dom (𝐹𝐴))
2423ancoms 266 . . 3 ((Ord dom 𝐹 ∧ Ord 𝐴) → Ord dom (𝐹𝐴))
2518, 24sylan 281 . 2 ((Smo 𝐹 ∧ Ord 𝐴) → Ord dom (𝐹𝐴))
26 resss 4843 . . . . . 6 (𝐹𝐴) ⊆ 𝐹
27 dmss 4738 . . . . . 6 ((𝐹𝐴) ⊆ 𝐹 → dom (𝐹𝐴) ⊆ dom 𝐹)
2826, 27ax-mp 5 . . . . 5 dom (𝐹𝐴) ⊆ dom 𝐹
291simp3bi 998 . . . . 5 (Smo 𝐹 → ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))
30 ssralv 3161 . . . . 5 (dom (𝐹𝐴) ⊆ dom 𝐹 → (∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥) → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
3128, 29, 30mpsyl 65 . . . 4 (Smo 𝐹 → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))
3231adantr 274 . . 3 ((Smo 𝐹 ∧ Ord 𝐴) → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))
33 ordtr1 4310 . . . . . . . . . . 11 (Ord dom (𝐹𝐴) → ((𝑦𝑥𝑥 ∈ dom (𝐹𝐴)) → 𝑦 ∈ dom (𝐹𝐴)))
3425, 33syl 14 . . . . . . . . . 10 ((Smo 𝐹 ∧ Ord 𝐴) → ((𝑦𝑥𝑥 ∈ dom (𝐹𝐴)) → 𝑦 ∈ dom (𝐹𝐴)))
35 inss1 3296 . . . . . . . . . . . 12 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
3620, 35eqsstri 3129 . . . . . . . . . . 11 dom (𝐹𝐴) ⊆ 𝐴
3736sseli 3093 . . . . . . . . . 10 (𝑦 ∈ dom (𝐹𝐴) → 𝑦𝐴)
3834, 37syl6 33 . . . . . . . . 9 ((Smo 𝐹 ∧ Ord 𝐴) → ((𝑦𝑥𝑥 ∈ dom (𝐹𝐴)) → 𝑦𝐴))
3938expcomd 1417 . . . . . . . 8 ((Smo 𝐹 ∧ Ord 𝐴) → (𝑥 ∈ dom (𝐹𝐴) → (𝑦𝑥𝑦𝐴)))
4039imp31 254 . . . . . . 7 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → 𝑦𝐴)
41 fvres 5445 . . . . . . 7 (𝑦𝐴 → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
4240, 41syl 14 . . . . . 6 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
4336sseli 3093 . . . . . . . 8 (𝑥 ∈ dom (𝐹𝐴) → 𝑥𝐴)
44 fvres 5445 . . . . . . . 8 (𝑥𝐴 → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
4543, 44syl 14 . . . . . . 7 (𝑥 ∈ dom (𝐹𝐴) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
4645ad2antlr 480 . . . . . 6 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
4742, 46eleq12d 2210 . . . . 5 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → (((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥) ↔ (𝐹𝑦) ∈ (𝐹𝑥)))
4847ralbidva 2433 . . . 4 (((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) → (∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥) ↔ ∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
4948ralbidva 2433 . . 3 ((Smo 𝐹 ∧ Ord 𝐴) → (∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥) ↔ ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
5032, 49mpbird 166 . 2 ((Smo 𝐹 ∧ Ord 𝐴) → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥))
51 dfsmo2 6184 . 2 (Smo (𝐹𝐴) ↔ ((𝐹𝐴):dom (𝐹𝐴)⟶On ∧ Ord dom (𝐹𝐴) ∧ ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥)))
5217, 25, 50, 51syl3anbrc 1165 1 ((Smo 𝐹 ∧ Ord 𝐴) → Smo (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  cin 3070  wss 3071  Ord word 4284  Oncon0 4285  dom cdm 4539  ran crn 4540  cres 4541  cima 4542  Fun wfun 5117   Fn wfn 5118  wf 5119  cfv 5123  Smo wsmo 6182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-tr 4027  df-iord 4288  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-smo 6183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator