ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smodm Unicode version

Theorem smodm 6270
Description: The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.)
Assertion
Ref Expression
smodm  |-  ( Smo 
A  ->  Ord  dom  A
)

Proof of Theorem smodm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-smo 6265 . 2  |-  ( Smo 
A  <->  ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
21simp2bi 1008 1  |-  ( Smo 
A  ->  Ord  dom  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   A.wral 2448   Ord word 4347   Oncon0 4348   dom cdm 4611   -->wf 5194   ` cfv 5198   Smo wsmo 6264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-3an 975  df-smo 6265
This theorem is referenced by:  smores2  6273  smodm2  6274  smoel  6279
  Copyright terms: Public domain W3C validator