| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > stdcn | GIF version | ||
| Description: A formula is stable if and only if the decidability of its negation implies its decidability. Note that the right-hand side of this biconditional is the converse of dcn 843. (Contributed by BJ, 18-Nov-2023.) | 
| Ref | Expression | 
|---|---|
| stdcn | ⊢ (STAB 𝜑 ↔ (DECID ¬ 𝜑 → DECID 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | stdcndc 846 | . . . 4 ⊢ ((STAB 𝜑 ∧ DECID ¬ 𝜑) ↔ DECID 𝜑) | |
| 2 | 1 | biimpi 120 | . . 3 ⊢ ((STAB 𝜑 ∧ DECID ¬ 𝜑) → DECID 𝜑) | 
| 3 | 2 | ex 115 | . 2 ⊢ (STAB 𝜑 → (DECID ¬ 𝜑 → DECID 𝜑)) | 
| 4 | olc 712 | . . . . 5 ⊢ (¬ ¬ 𝜑 → (¬ 𝜑 ∨ ¬ ¬ 𝜑)) | |
| 5 | 4 | imim1i 60 | . . . 4 ⊢ (((¬ 𝜑 ∨ ¬ ¬ 𝜑) → (𝜑 ∨ ¬ 𝜑)) → (¬ ¬ 𝜑 → (𝜑 ∨ ¬ 𝜑))) | 
| 6 | orel2 727 | . . . 4 ⊢ (¬ ¬ 𝜑 → ((𝜑 ∨ ¬ 𝜑) → 𝜑)) | |
| 7 | 5, 6 | sylcom 28 | . . 3 ⊢ (((¬ 𝜑 ∨ ¬ ¬ 𝜑) → (𝜑 ∨ ¬ 𝜑)) → (¬ ¬ 𝜑 → 𝜑)) | 
| 8 | df-dc 836 | . . . 4 ⊢ (DECID ¬ 𝜑 ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) | |
| 9 | df-dc 836 | . . . 4 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 10 | 8, 9 | imbi12i 239 | . . 3 ⊢ ((DECID ¬ 𝜑 → DECID 𝜑) ↔ ((¬ 𝜑 ∨ ¬ ¬ 𝜑) → (𝜑 ∨ ¬ 𝜑))) | 
| 11 | df-stab 832 | . . 3 ⊢ (STAB 𝜑 ↔ (¬ ¬ 𝜑 → 𝜑)) | |
| 12 | 7, 10, 11 | 3imtr4i 201 | . 2 ⊢ ((DECID ¬ 𝜑 → DECID 𝜑) → STAB 𝜑) | 
| 13 | 3, 12 | impbii 126 | 1 ⊢ (STAB 𝜑 ↔ (DECID ¬ 𝜑 → DECID 𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 STAB wstab 831 DECID wdc 835 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 | 
| This theorem is referenced by: dcnn 849 bj-charfunbi 15457 | 
| Copyright terms: Public domain | W3C validator |