| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2anb | GIF version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anb.1 | ⊢ (𝜑 ↔ 𝜓) |
| syl2anb.2 | ⊢ (𝜏 ↔ 𝜒) |
| syl2anb.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anb | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anb.2 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
| 2 | syl2anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | syl2anb.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylanb 284 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | sylan2b 287 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylancb 418 stdcndc 846 reupick3 3449 difprsnss 3761 trin2 5062 imadiflem 5338 fnun 5367 fco 5426 f1co 5478 foco 5494 f1oun 5527 f1oco 5530 eqfunfv 5667 ftpg 5749 issmo 6355 tfrlem5 6381 ener 6847 domtr 6853 unen 6884 xpdom2 6899 mapen 6916 pm54.43 7269 axpre-lttrn 7968 axpre-mulgt0 7971 zmulcl 9396 qaddcl 9726 qmulcl 9728 rpaddcl 9769 rpmulcl 9770 rpdivcl 9771 xrltnsym 9885 xrlttri3 9889 ge0addcl 10073 ge0mulcl 10074 ge0xaddcl 10075 expclzaplem 10672 expge0 10684 expge1 10685 hashfacen 10945 qredeu 12290 nn0gcdsq 12393 mul4sq 12588 cnovex 14516 iscn2 14520 txuni 14583 txcn 14595 lgsne0 15363 mul2sq 15441 |
| Copyright terms: Public domain | W3C validator |