Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl2anb | GIF version |
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
syl2anb.1 | ⊢ (𝜑 ↔ 𝜓) |
syl2anb.2 | ⊢ (𝜏 ↔ 𝜒) |
syl2anb.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anb | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anb.2 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
2 | syl2anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | syl2anb.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylanb 282 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | sylan2b 285 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sylancb 416 stdcndc 840 reupick3 3412 difprsnss 3716 trin2 5000 imadiflem 5275 fnun 5302 fco 5361 f1co 5413 foco 5428 f1oun 5460 f1oco 5463 eqfunfv 5596 ftpg 5677 issmo 6264 tfrlem5 6290 ener 6753 domtr 6759 unen 6790 xpdom2 6805 mapen 6820 pm54.43 7154 axpre-lttrn 7833 axpre-mulgt0 7836 zmulcl 9252 qaddcl 9581 qmulcl 9583 rpaddcl 9621 rpmulcl 9622 rpdivcl 9623 xrltnsym 9737 xrlttri3 9741 ge0addcl 9925 ge0mulcl 9926 ge0xaddcl 9927 expclzaplem 10487 expge0 10499 expge1 10500 hashfacen 10758 qredeu 12038 nn0gcdsq 12141 mul4sq 12333 cnovex 12949 iscn2 12953 txuni 13016 txcn 13028 lgsne0 13692 mul2sq 13705 |
Copyright terms: Public domain | W3C validator |