ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl2anb GIF version

Theorem syl2anb 289
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.)
Hypotheses
Ref Expression
syl2anb.1 (𝜑𝜓)
syl2anb.2 (𝜏𝜒)
syl2anb.3 ((𝜓𝜒) → 𝜃)
Assertion
Ref Expression
syl2anb ((𝜑𝜏) → 𝜃)

Proof of Theorem syl2anb
StepHypRef Expression
1 syl2anb.2 . 2 (𝜏𝜒)
2 syl2anb.1 . . 3 (𝜑𝜓)
3 syl2anb.3 . . 3 ((𝜓𝜒) → 𝜃)
42, 3sylanb 282 . 2 ((𝜑𝜒) → 𝜃)
51, 4sylan2b 285 1 ((𝜑𝜏) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sylancb  415  stdcndc  835  reupick3  3407  difprsnss  3711  trin2  4995  imadiflem  5267  fnun  5294  fco  5353  f1co  5405  foco  5420  f1oun  5452  f1oco  5455  eqfunfv  5588  ftpg  5669  issmo  6256  tfrlem5  6282  ener  6745  domtr  6751  unen  6782  xpdom2  6797  mapen  6812  pm54.43  7146  axpre-lttrn  7825  axpre-mulgt0  7828  zmulcl  9244  qaddcl  9573  qmulcl  9575  rpaddcl  9613  rpmulcl  9614  rpdivcl  9615  xrltnsym  9729  xrlttri3  9733  ge0addcl  9917  ge0mulcl  9918  ge0xaddcl  9919  expclzaplem  10479  expge0  10491  expge1  10492  hashfacen  10749  qredeu  12029  nn0gcdsq  12132  mul4sq  12324  cnovex  12836  iscn2  12840  txuni  12903  txcn  12915  lgsne0  13579  mul2sq  13592
  Copyright terms: Public domain W3C validator