| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2anb | GIF version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anb.1 | ⊢ (𝜑 ↔ 𝜓) |
| syl2anb.2 | ⊢ (𝜏 ↔ 𝜒) |
| syl2anb.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anb | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anb.2 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
| 2 | syl2anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | syl2anb.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylanb 284 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | sylan2b 287 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylancb 418 stdcndc 847 reupick3 3459 difprsnss 3773 trin2 5079 fundif 5323 imadiflem 5358 fnun 5387 fco 5447 f1co 5500 foco 5516 f1oun 5549 f1oco 5552 eqfunfv 5689 ftpg 5775 issmo 6381 tfrlem5 6407 ener 6878 domtr 6884 unen 6915 xpdom2 6933 mapen 6950 pm54.43 7305 axpre-lttrn 8004 axpre-mulgt0 8007 zmulcl 9433 qaddcl 9763 qmulcl 9765 rpaddcl 9806 rpmulcl 9807 rpdivcl 9808 xrltnsym 9922 xrlttri3 9926 ge0addcl 10110 ge0mulcl 10111 ge0xaddcl 10112 expclzaplem 10715 expge0 10727 expge1 10728 hashfacen 10988 qredeu 12463 nn0gcdsq 12566 mul4sq 12761 cnovex 14712 iscn2 14716 txuni 14779 txcn 14791 lgsne0 15559 mul2sq 15637 |
| Copyright terms: Public domain | W3C validator |