Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl2anb | GIF version |
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
syl2anb.1 | ⊢ (𝜑 ↔ 𝜓) |
syl2anb.2 | ⊢ (𝜏 ↔ 𝜒) |
syl2anb.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anb | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anb.2 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
2 | syl2anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | syl2anb.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylanb 282 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | sylan2b 285 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sylancb 416 stdcndc 840 reupick3 3412 difprsnss 3718 trin2 5002 imadiflem 5277 fnun 5304 fco 5363 f1co 5415 foco 5430 f1oun 5462 f1oco 5465 eqfunfv 5598 ftpg 5680 issmo 6267 tfrlem5 6293 ener 6757 domtr 6763 unen 6794 xpdom2 6809 mapen 6824 pm54.43 7167 axpre-lttrn 7846 axpre-mulgt0 7849 zmulcl 9265 qaddcl 9594 qmulcl 9596 rpaddcl 9634 rpmulcl 9635 rpdivcl 9636 xrltnsym 9750 xrlttri3 9754 ge0addcl 9938 ge0mulcl 9939 ge0xaddcl 9940 expclzaplem 10500 expge0 10512 expge1 10513 hashfacen 10771 qredeu 12051 nn0gcdsq 12154 mul4sq 12346 cnovex 12990 iscn2 12994 txuni 13057 txcn 13069 lgsne0 13733 mul2sq 13746 |
Copyright terms: Public domain | W3C validator |