ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl2anb GIF version

Theorem syl2anb 289
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.)
Hypotheses
Ref Expression
syl2anb.1 (𝜑𝜓)
syl2anb.2 (𝜏𝜒)
syl2anb.3 ((𝜓𝜒) → 𝜃)
Assertion
Ref Expression
syl2anb ((𝜑𝜏) → 𝜃)

Proof of Theorem syl2anb
StepHypRef Expression
1 syl2anb.2 . 2 (𝜏𝜒)
2 syl2anb.1 . . 3 (𝜑𝜓)
3 syl2anb.3 . . 3 ((𝜓𝜒) → 𝜃)
42, 3sylanb 282 . 2 ((𝜑𝜒) → 𝜃)
51, 4sylan2b 285 1 ((𝜑𝜏) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sylancb  416  stdcndc  840  reupick3  3412  difprsnss  3718  trin2  5002  imadiflem  5277  fnun  5304  fco  5363  f1co  5415  foco  5430  f1oun  5462  f1oco  5465  eqfunfv  5598  ftpg  5680  issmo  6267  tfrlem5  6293  ener  6757  domtr  6763  unen  6794  xpdom2  6809  mapen  6824  pm54.43  7167  axpre-lttrn  7846  axpre-mulgt0  7849  zmulcl  9265  qaddcl  9594  qmulcl  9596  rpaddcl  9634  rpmulcl  9635  rpdivcl  9636  xrltnsym  9750  xrlttri3  9754  ge0addcl  9938  ge0mulcl  9939  ge0xaddcl  9940  expclzaplem  10500  expge0  10512  expge1  10513  hashfacen  10771  qredeu  12051  nn0gcdsq  12154  mul4sq  12346  cnovex  12990  iscn2  12994  txuni  13057  txcn  13069  lgsne0  13733  mul2sq  13746
  Copyright terms: Public domain W3C validator