| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2anb | GIF version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anb.1 | ⊢ (𝜑 ↔ 𝜓) |
| syl2anb.2 | ⊢ (𝜏 ↔ 𝜒) |
| syl2anb.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anb | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anb.2 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
| 2 | syl2anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | syl2anb.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylanb 284 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | sylan2b 287 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylancb 418 stdcndc 846 reupick3 3449 difprsnss 3761 trin2 5062 imadiflem 5338 fnun 5367 fco 5426 f1co 5478 foco 5494 f1oun 5527 f1oco 5530 eqfunfv 5667 ftpg 5749 issmo 6355 tfrlem5 6381 ener 6847 domtr 6853 unen 6884 xpdom2 6899 mapen 6916 pm54.43 7271 axpre-lttrn 7970 axpre-mulgt0 7973 zmulcl 9398 qaddcl 9728 qmulcl 9730 rpaddcl 9771 rpmulcl 9772 rpdivcl 9773 xrltnsym 9887 xrlttri3 9891 ge0addcl 10075 ge0mulcl 10076 ge0xaddcl 10077 expclzaplem 10674 expge0 10686 expge1 10687 hashfacen 10947 qredeu 12292 nn0gcdsq 12395 mul4sq 12590 cnovex 14518 iscn2 14522 txuni 14585 txcn 14597 lgsne0 15365 mul2sq 15443 |
| Copyright terms: Public domain | W3C validator |