| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2anb | GIF version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anb.1 | ⊢ (𝜑 ↔ 𝜓) |
| syl2anb.2 | ⊢ (𝜏 ↔ 𝜒) |
| syl2anb.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anb | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anb.2 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
| 2 | syl2anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | syl2anb.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylanb 284 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | sylan2b 287 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylancb 418 stdcndc 850 reupick3 3489 difprsnss 3806 trin2 5120 fundif 5365 imadiflem 5400 fnun 5429 fco 5491 f1co 5545 foco 5561 f1oun 5594 f1oco 5597 eqfunfv 5739 ftpg 5827 issmo 6440 tfrlem5 6466 ener 6939 domtr 6945 unen 6977 xpdom2 6998 mapen 7015 pm54.43 7371 axpre-lttrn 8079 axpre-mulgt0 8082 zmulcl 9508 qaddcl 9838 qmulcl 9840 rpaddcl 9881 rpmulcl 9882 rpdivcl 9883 xrltnsym 9997 xrlttri3 10001 ge0addcl 10185 ge0mulcl 10186 ge0xaddcl 10187 expclzaplem 10793 expge0 10805 expge1 10806 hashfacen 11066 qredeu 12627 nn0gcdsq 12730 mul4sq 12925 cnovex 14878 iscn2 14882 txuni 14945 txcn 14957 lgsne0 15725 mul2sq 15803 |
| Copyright terms: Public domain | W3C validator |