| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2anb | GIF version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anb.1 | ⊢ (𝜑 ↔ 𝜓) |
| syl2anb.2 | ⊢ (𝜏 ↔ 𝜒) |
| syl2anb.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anb | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anb.2 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
| 2 | syl2anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | syl2anb.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylanb 284 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | sylan2b 287 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylancb 418 stdcndc 849 reupick3 3469 difprsnss 3785 trin2 5096 fundif 5341 imadiflem 5376 fnun 5405 fco 5465 f1co 5519 foco 5535 f1oun 5568 f1oco 5571 eqfunfv 5710 ftpg 5796 issmo 6404 tfrlem5 6430 ener 6901 domtr 6907 unen 6939 xpdom2 6958 mapen 6975 pm54.43 7331 axpre-lttrn 8039 axpre-mulgt0 8042 zmulcl 9468 qaddcl 9798 qmulcl 9800 rpaddcl 9841 rpmulcl 9842 rpdivcl 9843 xrltnsym 9957 xrlttri3 9961 ge0addcl 10145 ge0mulcl 10146 ge0xaddcl 10147 expclzaplem 10752 expge0 10764 expge1 10765 hashfacen 11025 qredeu 12585 nn0gcdsq 12688 mul4sq 12883 cnovex 14835 iscn2 14839 txuni 14902 txcn 14914 lgsne0 15682 mul2sq 15760 |
| Copyright terms: Public domain | W3C validator |