| Step | Hyp | Ref
| Expression |
| 1 | | pcge0 12507 |
. . . 4
⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 0 ≤
(𝑝 pCnt 𝐴)) |
| 2 | 1 | ancoms 268 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ℙ) → 0 ≤
(𝑝 pCnt 𝐴)) |
| 3 | 2 | ralrimiva 2570 |
. 2
⊢ (𝐴 ∈ ℤ →
∀𝑝 ∈ ℙ 0
≤ (𝑝 pCnt 𝐴)) |
| 4 | | elq 9713 |
. . 3
⊢ (𝐴 ∈ ℚ ↔
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℕ
𝐴 = (𝑥 / 𝑦)) |
| 5 | | nnz 9362 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) |
| 6 | | dvds0 11988 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℤ → 𝑦 ∥ 0) |
| 7 | 5, 6 | syl 14 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → 𝑦 ∥ 0) |
| 8 | 7 | ad2antlr 489 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 = 0) → 𝑦 ∥ 0) |
| 9 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 = 0) → 𝑥 = 0) |
| 10 | 8, 9 | breqtrrd 4062 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 = 0) → 𝑦 ∥ 𝑥) |
| 11 | 10 | a1d 22 |
. . . . . . 7
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 = 0) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) → 𝑦 ∥ 𝑥)) |
| 12 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈
ℙ) |
| 13 | | simplll 533 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑥 ∈
ℤ) |
| 14 | | simplr 528 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑥 ≠ 0) |
| 15 | | simpllr 534 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑦 ∈
ℕ) |
| 16 | | pcdiv 12496 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑝 pCnt (𝑥 / 𝑦)) = ((𝑝 pCnt 𝑥) − (𝑝 pCnt 𝑦))) |
| 17 | 12, 13, 14, 15, 16 | syl121anc 1254 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑥 / 𝑦)) = ((𝑝 pCnt 𝑥) − (𝑝 pCnt 𝑦))) |
| 18 | 17 | breq2d 4046 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (0 ≤
(𝑝 pCnt (𝑥 / 𝑦)) ↔ 0 ≤ ((𝑝 pCnt 𝑥) − (𝑝 pCnt 𝑦)))) |
| 19 | | pczcl 12492 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑝 pCnt 𝑥) ∈
ℕ0) |
| 20 | 12, 13, 14, 19 | syl12anc 1247 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑥) ∈
ℕ0) |
| 21 | 20 | nn0red 9320 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑥) ∈ ℝ) |
| 22 | 12, 15 | pccld 12494 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑦) ∈
ℕ0) |
| 23 | 22 | nn0red 9320 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑦) ∈ ℝ) |
| 24 | 21, 23 | subge0d 8579 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (0 ≤
((𝑝 pCnt 𝑥) − (𝑝 pCnt 𝑦)) ↔ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥))) |
| 25 | 18, 24 | bitrd 188 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (0 ≤
(𝑝 pCnt (𝑥 / 𝑦)) ↔ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥))) |
| 26 | 25 | ralbidva 2493 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥))) |
| 27 | | id 19 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℤ) |
| 28 | | pc2dvds 12524 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 ∥ 𝑥 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥))) |
| 29 | 5, 27, 28 | syl2anr 290 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑦 ∥ 𝑥 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥))) |
| 30 | 29 | adantr 276 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (𝑦 ∥ 𝑥 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥))) |
| 31 | 26, 30 | bitr4d 191 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) ↔ 𝑦 ∥ 𝑥)) |
| 32 | 31 | biimpd 144 |
. . . . . . 7
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) → 𝑦 ∥ 𝑥)) |
| 33 | | 0zd 9355 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 0 ∈
ℤ) |
| 34 | | zdceq 9418 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑥 = 0) |
| 35 | 33, 34 | syldan 282 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) →
DECID 𝑥 =
0) |
| 36 | | dcne 2378 |
. . . . . . . 8
⊢
(DECID 𝑥 = 0 ↔ (𝑥 = 0 ∨ 𝑥 ≠ 0)) |
| 37 | 35, 36 | sylib 122 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 = 0 ∨ 𝑥 ≠ 0)) |
| 38 | 11, 32, 37 | mpjaodan 799 |
. . . . . 6
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) →
(∀𝑝 ∈ ℙ 0
≤ (𝑝 pCnt (𝑥 / 𝑦)) → 𝑦 ∥ 𝑥)) |
| 39 | | nnne0 9035 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → 𝑦 ≠ 0) |
| 40 | | simpl 109 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 𝑥 ∈
ℤ) |
| 41 | | dvdsval2 11972 |
. . . . . . 7
⊢ ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝑥 ∈ ℤ) → (𝑦 ∥ 𝑥 ↔ (𝑥 / 𝑦) ∈ ℤ)) |
| 42 | 5, 39, 40, 41 | syl2an23an 1310 |
. . . . . 6
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑦 ∥ 𝑥 ↔ (𝑥 / 𝑦) ∈ ℤ)) |
| 43 | 38, 42 | sylibd 149 |
. . . . 5
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) →
(∀𝑝 ∈ ℙ 0
≤ (𝑝 pCnt (𝑥 / 𝑦)) → (𝑥 / 𝑦) ∈ ℤ)) |
| 44 | | oveq2 5933 |
. . . . . . . 8
⊢ (𝐴 = (𝑥 / 𝑦) → (𝑝 pCnt 𝐴) = (𝑝 pCnt (𝑥 / 𝑦))) |
| 45 | 44 | breq2d 4046 |
. . . . . . 7
⊢ (𝐴 = (𝑥 / 𝑦) → (0 ≤ (𝑝 pCnt 𝐴) ↔ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)))) |
| 46 | 45 | ralbidv 2497 |
. . . . . 6
⊢ (𝐴 = (𝑥 / 𝑦) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴) ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)))) |
| 47 | | eleq1 2259 |
. . . . . 6
⊢ (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℤ ↔ (𝑥 / 𝑦) ∈ ℤ)) |
| 48 | 46, 47 | imbi12d 234 |
. . . . 5
⊢ (𝐴 = (𝑥 / 𝑦) → ((∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴) → 𝐴 ∈ ℤ) ↔ (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) → (𝑥 / 𝑦) ∈ ℤ))) |
| 49 | 43, 48 | syl5ibrcom 157 |
. . . 4
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴) → 𝐴 ∈ ℤ))) |
| 50 | 49 | rexlimivv 2620 |
. . 3
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℕ 𝐴 = (𝑥 / 𝑦) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴) → 𝐴 ∈ ℤ)) |
| 51 | 4, 50 | sylbi 121 |
. 2
⊢ (𝐴 ∈ ℚ →
(∀𝑝 ∈ ℙ 0
≤ (𝑝 pCnt 𝐴) → 𝐴 ∈ ℤ)) |
| 52 | 3, 51 | impbid2 143 |
1
⊢ (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔
∀𝑝 ∈ ℙ 0
≤ (𝑝 pCnt 𝐴))) |