ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcz GIF version

Theorem pcz 12574
Description: The prime count function can be used as an indicator that a given rational number is an integer. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pcz (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴)))
Distinct variable group:   𝐴,𝑝

Proof of Theorem pcz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcge0 12555 . . . 4 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 0 ≤ (𝑝 pCnt 𝐴))
21ancoms 268 . . 3 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt 𝐴))
32ralrimiva 2578 . 2 (𝐴 ∈ ℤ → ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴))
4 elq 9725 . . 3 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
5 nnz 9373 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
6 dvds0 12036 . . . . . . . . . . 11 (𝑦 ∈ ℤ → 𝑦 ∥ 0)
75, 6syl 14 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∥ 0)
87ad2antlr 489 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 = 0) → 𝑦 ∥ 0)
9 simpr 110 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 = 0) → 𝑥 = 0)
108, 9breqtrrd 4071 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 = 0) → 𝑦𝑥)
1110a1d 22 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 = 0) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) → 𝑦𝑥))
12 simpr 110 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
13 simplll 533 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑥 ∈ ℤ)
14 simplr 528 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑥 ≠ 0)
15 simpllr 534 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑦 ∈ ℕ)
16 pcdiv 12544 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑝 pCnt (𝑥 / 𝑦)) = ((𝑝 pCnt 𝑥) − (𝑝 pCnt 𝑦)))
1712, 13, 14, 15, 16syl121anc 1254 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑥 / 𝑦)) = ((𝑝 pCnt 𝑥) − (𝑝 pCnt 𝑦)))
1817breq2d 4055 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) ↔ 0 ≤ ((𝑝 pCnt 𝑥) − (𝑝 pCnt 𝑦))))
19 pczcl 12540 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑝 pCnt 𝑥) ∈ ℕ0)
2012, 13, 14, 19syl12anc 1247 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑥) ∈ ℕ0)
2120nn0red 9331 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑥) ∈ ℝ)
2212, 15pccld 12542 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑦) ∈ ℕ0)
2322nn0red 9331 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑦) ∈ ℝ)
2421, 23subge0d 8590 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (0 ≤ ((𝑝 pCnt 𝑥) − (𝑝 pCnt 𝑦)) ↔ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥)))
2518, 24bitrd 188 . . . . . . . . . 10 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) ↔ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥)))
2625ralbidva 2501 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥)))
27 id 19 . . . . . . . . . . 11 (𝑥 ∈ ℤ → 𝑥 ∈ ℤ)
28 pc2dvds 12572 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥)))
295, 27, 28syl2anr 290 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑦𝑥 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥)))
3029adantr 276 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (𝑦𝑥 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥)))
3126, 30bitr4d 191 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) ↔ 𝑦𝑥))
3231biimpd 144 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) → 𝑦𝑥))
33 0zd 9366 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 0 ∈ ℤ)
34 zdceq 9430 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑥 = 0)
3533, 34syldan 282 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → DECID 𝑥 = 0)
36 dcne 2386 . . . . . . . 8 (DECID 𝑥 = 0 ↔ (𝑥 = 0 ∨ 𝑥 ≠ 0))
3735, 36sylib 122 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 = 0 ∨ 𝑥 ≠ 0))
3811, 32, 37mpjaodan 799 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) → 𝑦𝑥))
39 nnne0 9046 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
40 simpl 109 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℤ)
41 dvdsval2 12020 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝑥 ∈ ℤ) → (𝑦𝑥 ↔ (𝑥 / 𝑦) ∈ ℤ))
425, 39, 40, 41syl2an23an 1311 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑦𝑥 ↔ (𝑥 / 𝑦) ∈ ℤ))
4338, 42sylibd 149 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) → (𝑥 / 𝑦) ∈ ℤ))
44 oveq2 5942 . . . . . . . 8 (𝐴 = (𝑥 / 𝑦) → (𝑝 pCnt 𝐴) = (𝑝 pCnt (𝑥 / 𝑦)))
4544breq2d 4055 . . . . . . 7 (𝐴 = (𝑥 / 𝑦) → (0 ≤ (𝑝 pCnt 𝐴) ↔ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦))))
4645ralbidv 2505 . . . . . 6 (𝐴 = (𝑥 / 𝑦) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴) ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦))))
47 eleq1 2267 . . . . . 6 (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℤ ↔ (𝑥 / 𝑦) ∈ ℤ))
4846, 47imbi12d 234 . . . . 5 (𝐴 = (𝑥 / 𝑦) → ((∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴) → 𝐴 ∈ ℤ) ↔ (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) → (𝑥 / 𝑦) ∈ ℤ)))
4943, 48syl5ibrcom 157 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴) → 𝐴 ∈ ℤ)))
5049rexlimivv 2628 . . 3 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴) → 𝐴 ∈ ℤ))
514, 50sylbi 121 . 2 (𝐴 ∈ ℚ → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴) → 𝐴 ∈ ℤ))
523, 51impbid2 143 1 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1372  wcel 2175  wne 2375  wral 2483  wrex 2484   class class class wbr 4043  (class class class)co 5934  0cc0 7907  cle 8090  cmin 8225   / cdiv 8727  cn 9018  0cn0 9277  cz 9354  cq 9722  cdvds 12017  cprime 12348   pCnt cpc 12526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-1o 6492  df-2o 6493  df-er 6610  df-en 6818  df-sup 7068  df-inf 7069  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-xnn0 9341  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-fz 10113  df-fzo 10247  df-fl 10394  df-mod 10449  df-seqfrec 10574  df-exp 10665  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-dvds 12018  df-gcd 12194  df-prm 12349  df-pc 12527
This theorem is referenced by:  pcmptdvds  12587  qexpz  12594
  Copyright terms: Public domain W3C validator