ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl2an3an GIF version

Theorem syl2an3an 1288
Description: syl3an 1270 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.)
Hypotheses
Ref Expression
syl2an3an.1 (𝜑𝜓)
syl2an3an.2 (𝜑𝜒)
syl2an3an.3 (𝜃𝜏)
syl2an3an.4 ((𝜓𝜒𝜏) → 𝜂)
Assertion
Ref Expression
syl2an3an ((𝜑𝜃) → 𝜂)

Proof of Theorem syl2an3an
StepHypRef Expression
1 syl2an3an.1 . . 3 (𝜑𝜓)
2 syl2an3an.2 . . 3 (𝜑𝜒)
3 syl2an3an.3 . . 3 (𝜃𝜏)
4 syl2an3an.4 . . 3 ((𝜓𝜒𝜏) → 𝜂)
51, 2, 3, 4syl3an 1270 . 2 ((𝜑𝜑𝜃) → 𝜂)
653anidm12 1285 1 ((𝜑𝜃) → 𝜂)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  expcnvap0  11443  efexp  11623  cncongr1  12035  uptx  12914  logbgcd1irr  13525
  Copyright terms: Public domain W3C validator