| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > syl2an3an | GIF version | ||
| Description: syl3an 1291 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| syl2an3an.1 | ⊢ (𝜑 → 𝜓) | 
| syl2an3an.2 | ⊢ (𝜑 → 𝜒) | 
| syl2an3an.3 | ⊢ (𝜃 → 𝜏) | 
| syl2an3an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | 
| Ref | Expression | 
|---|---|
| syl2an3an | ⊢ ((𝜑 ∧ 𝜃) → 𝜂) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl2an3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an3an.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl2an3an.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 4 | syl2an3an.4 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 2, 3, 4 | syl3an 1291 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜃) → 𝜂) | 
| 6 | 5 | 3anidm12 1306 | 1 ⊢ ((𝜑 ∧ 𝜃) → 𝜂) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: prfidceq 6989 expcnvap0 11667 efexp 11847 cncongr1 12271 uptx 14510 logbgcd1irr 15203 gausslemma2dlem2 15303 | 
| Copyright terms: Public domain | W3C validator |