Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl2an3an | GIF version |
Description: syl3an 1270 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) |
Ref | Expression |
---|---|
syl2an3an.1 | ⊢ (𝜑 → 𝜓) |
syl2an3an.2 | ⊢ (𝜑 → 𝜒) |
syl2an3an.3 | ⊢ (𝜃 → 𝜏) |
syl2an3an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl2an3an | ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2an3an.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl2an3an.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
4 | syl2an3an.4 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
5 | 1, 2, 3, 4 | syl3an 1270 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜃) → 𝜂) |
6 | 5 | 3anidm12 1285 | 1 ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: expcnvap0 11443 efexp 11623 cncongr1 12035 uptx 12914 logbgcd1irr 13525 |
Copyright terms: Public domain | W3C validator |