ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3ser GIF version

Theorem fsum3ser 11360
Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 11375 and fsump1 11383, which should make our notation clear and from which, along with closure fsumcl 11363, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.)
Hypotheses
Ref Expression
fsum3ser.1 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = 𝐴)
fsum3ser.2 (𝜑𝑁 ∈ (ℤ𝑀))
fsum3ser.3 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fsum3ser (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fsum3ser
Dummy variables 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2170 . . . . 5 (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)) = (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))
2 eleq1w 2231 . . . . . 6 (𝑚 = 𝑘 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ (𝑀...𝑁)))
3 fveq2 5496 . . . . . 6 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
42, 3ifbieq1d 3548 . . . . 5 (𝑚 = 𝑘 → if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
5 simpr 109 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
6 fsum3ser.1 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = 𝐴)
7 fsum3ser.3 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
86, 7eqeltrd 2247 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
98adantr 274 . . . . . 6 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
10 0cnd 7913 . . . . . 6 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ¬ 𝑘 ∈ (𝑀...𝑁)) → 0 ∈ ℂ)
11 eluzelz 9496 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
12 eluzel2 9492 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
13 fsum3ser.2 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
14 eluzelz 9496 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1513, 14syl 14 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
1615adantr 274 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
17 fzdcel 9996 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑘 ∈ (𝑀...𝑁))
1811, 12, 16, 17syl2an23an 1294 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘 ∈ (𝑀...𝑁))
199, 10, 18ifcldadc 3555 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) ∈ ℂ)
201, 4, 5, 19fvmptd3 5589 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
216ifeq1d 3543 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0))
2220, 21eqtrd 2203 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0))
23 elfzuz 9977 . . . 4 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
2423, 7sylan2 284 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
25 ssidd 3168 . . 3 (𝜑 → (𝑀...𝑁) ⊆ (𝑀...𝑁))
2622, 13, 24, 18, 25fsumsersdc 11358 . 2 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)))‘𝑁))
2723, 20sylan2 284 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
28 iftrue 3531 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = (𝐹𝑘))
2928adantl 275 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = (𝐹𝑘))
3027, 29eqtrd 2203 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = (𝐹𝑘))
31 eleq1w 2231 . . . . . 6 (𝑚 = 𝑥 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ (𝑀...𝑁)))
32 fveq2 5496 . . . . . 6 (𝑚 = 𝑥 → (𝐹𝑚) = (𝐹𝑥))
3331, 32ifbieq1d 3548 . . . . 5 (𝑚 = 𝑥 → if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0) = if(𝑥 ∈ (𝑀...𝑁), (𝐹𝑥), 0))
34 simpr 109 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
35 fveq2 5496 . . . . . . . 8 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
3635eleq1d 2239 . . . . . . 7 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑥) ∈ ℂ))
378ralrimiva 2543 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
3837adantr 274 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
3936, 38, 34rspcdva 2839 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℂ)
40 0cnd 7913 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 0 ∈ ℂ)
41 eluzelz 9496 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
42 eluzel2 9492 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
4315adantr 274 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
44 fzdcel 9996 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑥 ∈ (𝑀...𝑁))
4541, 42, 43, 44syl2an23an 1294 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → DECID 𝑥 ∈ (𝑀...𝑁))
4639, 40, 45ifcldcd 3561 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → if(𝑥 ∈ (𝑀...𝑁), (𝐹𝑥), 0) ∈ ℂ)
471, 33, 34, 46fvmptd3 5589 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑥) = if(𝑥 ∈ (𝑀...𝑁), (𝐹𝑥), 0))
4847, 46eqeltrd 2247 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑥) ∈ ℂ)
4936cbvralv 2696 . . . . 5 (∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ ↔ ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ ℂ)
5037, 49sylib 121 . . . 4 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ ℂ)
5150r19.21bi 2558 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℂ)
52 addcl 7899 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
5352adantl 275 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
5413, 30, 48, 51, 53seq3fveq 10427 . 2 (𝜑 → (seq𝑀( + , (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁))
5526, 54eqtrd 2203 1 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  DECID wdc 829   = wceq 1348  wcel 2141  wral 2448  ifcif 3526  cmpt 4050  cfv 5198  (class class class)co 5853  cc 7772  0cc0 7774   + caddc 7777  cz 9212  cuz 9487  ...cfz 9965  seqcseq 10401  Σcsu 11316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317
This theorem is referenced by:  isumclim3  11386  iserabs  11438  isumsplit  11454  trireciplem  11463  geolim  11474  geo2lim  11479  cvgratnnlemseq  11489  mertenslem2  11499  mertensabs  11500  efcvgfsum  11630  effsumlt  11655  cvgcmp2nlemabs  14064
  Copyright terms: Public domain W3C validator