Step | Hyp | Ref
| Expression |
1 | | eqid 2165 |
. . . . 5
⊢ (𝑚 ∈
(ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)) = (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)) |
2 | | eleq1w 2227 |
. . . . . 6
⊢ (𝑚 = 𝑘 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ (𝑀...𝑁))) |
3 | | fveq2 5486 |
. . . . . 6
⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) |
4 | 2, 3 | ifbieq1d 3542 |
. . . . 5
⊢ (𝑚 = 𝑘 → if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0) = if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0)) |
5 | | simpr 109 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
6 | | fsum3ser.1 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = 𝐴) |
7 | | fsum3ser.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ) |
8 | 6, 7 | eqeltrd 2243 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
9 | 8 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℂ) |
10 | | 0cnd 7892 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑘 ∈ (𝑀...𝑁)) → 0 ∈ ℂ) |
11 | | eluzelz 9475 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) |
12 | | eluzel2 9471 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
13 | | fsum3ser.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
14 | | eluzelz 9475 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
15 | 13, 14 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) |
16 | 15 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) |
17 | | fzdcel 9975 |
. . . . . . 7
⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑘
∈ (𝑀...𝑁)) |
18 | 11, 12, 16, 17 | syl2an23an 1289 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ (𝑀...𝑁)) |
19 | 9, 10, 18 | ifcldadc 3549 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) ∈ ℂ) |
20 | 1, 4, 5, 19 | fvmptd3 5579 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0)) |
21 | 6 | ifeq1d 3537 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0)) |
22 | 20, 21 | eqtrd 2198 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0)) |
23 | | elfzuz 9956 |
. . . 4
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) |
24 | 23, 7 | sylan2 284 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
25 | | ssidd 3163 |
. . 3
⊢ (𝜑 → (𝑀...𝑁) ⊆ (𝑀...𝑁)) |
26 | 22, 13, 24, 18, 25 | fsumsersdc 11336 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)))‘𝑁)) |
27 | 23, 20 | sylan2 284 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0)) |
28 | | iftrue 3525 |
. . . . 5
⊢ (𝑘 ∈ (𝑀...𝑁) → if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) = (𝐹‘𝑘)) |
29 | 28 | adantl 275 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) = (𝐹‘𝑘)) |
30 | 27, 29 | eqtrd 2198 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = (𝐹‘𝑘)) |
31 | | eleq1w 2227 |
. . . . . 6
⊢ (𝑚 = 𝑥 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ (𝑀...𝑁))) |
32 | | fveq2 5486 |
. . . . . 6
⊢ (𝑚 = 𝑥 → (𝐹‘𝑚) = (𝐹‘𝑥)) |
33 | 31, 32 | ifbieq1d 3542 |
. . . . 5
⊢ (𝑚 = 𝑥 → if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0) = if(𝑥 ∈ (𝑀...𝑁), (𝐹‘𝑥), 0)) |
34 | | simpr 109 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
35 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) |
36 | 35 | eleq1d 2235 |
. . . . . . 7
⊢ (𝑘 = 𝑥 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑥) ∈ ℂ)) |
37 | 8 | ralrimiva 2539 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ) |
38 | 37 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ∀𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ) |
39 | 36, 38, 34 | rspcdva 2835 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ ℂ) |
40 | | 0cnd 7892 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 0 ∈
ℂ) |
41 | | eluzelz 9475 |
. . . . . . 7
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → 𝑥 ∈ ℤ) |
42 | | eluzel2 9471 |
. . . . . . 7
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
43 | 15 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) |
44 | | fzdcel 9975 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑥
∈ (𝑀...𝑁)) |
45 | 41, 42, 43, 44 | syl2an23an 1289 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → DECID
𝑥 ∈ (𝑀...𝑁)) |
46 | 39, 40, 45 | ifcldcd 3555 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → if(𝑥 ∈ (𝑀...𝑁), (𝐹‘𝑥), 0) ∈ ℂ) |
47 | 1, 33, 34, 46 | fvmptd3 5579 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑥) = if(𝑥 ∈ (𝑀...𝑁), (𝐹‘𝑥), 0)) |
48 | 47, 46 | eqeltrd 2243 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑥) ∈ ℂ) |
49 | 36 | cbvralv 2692 |
. . . . 5
⊢
(∀𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ ↔ ∀𝑥 ∈
(ℤ≥‘𝑀)(𝐹‘𝑥) ∈ ℂ) |
50 | 37, 49 | sylib 121 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ ℂ) |
51 | 50 | r19.21bi 2554 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ ℂ) |
52 | | addcl 7878 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
53 | 52 | adantl 275 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
54 | 13, 30, 48, 51, 53 | seq3fveq 10406 |
. 2
⊢ (𝜑 → (seq𝑀( + , (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)) |
55 | 26, 54 | eqtrd 2198 |
1
⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁)) |