ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3ser GIF version

Theorem fsum3ser 11679
Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 11694 and fsump1 11702, which should make our notation clear and from which, along with closure fsumcl 11682, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.)
Hypotheses
Ref Expression
fsum3ser.1 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = 𝐴)
fsum3ser.2 (𝜑𝑁 ∈ (ℤ𝑀))
fsum3ser.3 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fsum3ser (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fsum3ser
Dummy variables 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2204 . . . . 5 (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)) = (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))
2 eleq1w 2265 . . . . . 6 (𝑚 = 𝑘 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ (𝑀...𝑁)))
3 fveq2 5575 . . . . . 6 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
42, 3ifbieq1d 3592 . . . . 5 (𝑚 = 𝑘 → if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
5 simpr 110 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
6 fsum3ser.1 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = 𝐴)
7 fsum3ser.3 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
86, 7eqeltrd 2281 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
98adantr 276 . . . . . 6 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
10 0cnd 8064 . . . . . 6 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ¬ 𝑘 ∈ (𝑀...𝑁)) → 0 ∈ ℂ)
11 eluzelz 9656 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
12 eluzel2 9652 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
13 fsum3ser.2 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
14 eluzelz 9656 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1513, 14syl 14 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
1615adantr 276 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
17 fzdcel 10161 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑘 ∈ (𝑀...𝑁))
1811, 12, 16, 17syl2an23an 1311 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘 ∈ (𝑀...𝑁))
199, 10, 18ifcldadc 3599 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) ∈ ℂ)
201, 4, 5, 19fvmptd3 5672 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
216ifeq1d 3587 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0))
2220, 21eqtrd 2237 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0))
23 elfzuz 10142 . . . 4 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
2423, 7sylan2 286 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
25 ssidd 3213 . . 3 (𝜑 → (𝑀...𝑁) ⊆ (𝑀...𝑁))
2622, 13, 24, 18, 25fsumsersdc 11677 . 2 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)))‘𝑁))
2723, 20sylan2 286 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
28 iftrue 3575 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = (𝐹𝑘))
2928adantl 277 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = (𝐹𝑘))
3027, 29eqtrd 2237 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = (𝐹𝑘))
31 eleq1w 2265 . . . . . 6 (𝑚 = 𝑥 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ (𝑀...𝑁)))
32 fveq2 5575 . . . . . 6 (𝑚 = 𝑥 → (𝐹𝑚) = (𝐹𝑥))
3331, 32ifbieq1d 3592 . . . . 5 (𝑚 = 𝑥 → if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0) = if(𝑥 ∈ (𝑀...𝑁), (𝐹𝑥), 0))
34 simpr 110 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
35 fveq2 5575 . . . . . . . 8 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
3635eleq1d 2273 . . . . . . 7 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑥) ∈ ℂ))
378ralrimiva 2578 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
3837adantr 276 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
3936, 38, 34rspcdva 2881 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℂ)
40 0cnd 8064 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 0 ∈ ℂ)
41 eluzelz 9656 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
42 eluzel2 9652 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
4315adantr 276 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
44 fzdcel 10161 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑥 ∈ (𝑀...𝑁))
4541, 42, 43, 44syl2an23an 1311 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → DECID 𝑥 ∈ (𝑀...𝑁))
4639, 40, 45ifcldcd 3607 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → if(𝑥 ∈ (𝑀...𝑁), (𝐹𝑥), 0) ∈ ℂ)
471, 33, 34, 46fvmptd3 5672 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑥) = if(𝑥 ∈ (𝑀...𝑁), (𝐹𝑥), 0))
4847, 46eqeltrd 2281 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑥) ∈ ℂ)
4936cbvralv 2737 . . . . 5 (∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ ↔ ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ ℂ)
5037, 49sylib 122 . . . 4 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ ℂ)
5150r19.21bi 2593 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℂ)
52 addcl 8049 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
5352adantl 277 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
5413, 30, 48, 51, 53seq3fveq 10622 . 2 (𝜑 → (seq𝑀( + , (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁))
5526, 54eqtrd 2237 1 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835   = wceq 1372  wcel 2175  wral 2483  ifcif 3570  cmpt 4104  cfv 5270  (class class class)co 5943  cc 7922  0cc0 7924   + caddc 7927  cz 9371  cuz 9647  ...cfz 10129  seqcseq 10590  Σcsu 11635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682  df-ihash 10919  df-cj 11124  df-re 11125  df-im 11126  df-rsqrt 11280  df-abs 11281  df-clim 11561  df-sumdc 11636
This theorem is referenced by:  isumclim3  11705  iserabs  11757  isumsplit  11773  trireciplem  11782  geolim  11793  geo2lim  11798  cvgratnnlemseq  11808  mertenslem2  11818  mertensabs  11819  efcvgfsum  11949  effsumlt  11974  cvgcmp2nlemabs  15933
  Copyright terms: Public domain W3C validator