| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2196 |
. . . . 5
⊢ (𝑚 ∈
(ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)) = (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)) |
| 2 | | eleq1w 2257 |
. . . . . 6
⊢ (𝑚 = 𝑘 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ (𝑀...𝑁))) |
| 3 | | fveq2 5558 |
. . . . . 6
⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) |
| 4 | 2, 3 | ifbieq1d 3583 |
. . . . 5
⊢ (𝑚 = 𝑘 → if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0) = if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0)) |
| 5 | | simpr 110 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 6 | | fsum3ser.1 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = 𝐴) |
| 7 | | fsum3ser.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ) |
| 8 | 6, 7 | eqeltrd 2273 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
| 9 | 8 | adantr 276 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℂ) |
| 10 | | 0cnd 8019 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑘 ∈ (𝑀...𝑁)) → 0 ∈ ℂ) |
| 11 | | eluzelz 9610 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) |
| 12 | | eluzel2 9606 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 13 | | fsum3ser.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 14 | | eluzelz 9610 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 15 | 13, 14 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 16 | 15 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) |
| 17 | | fzdcel 10115 |
. . . . . . 7
⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑘
∈ (𝑀...𝑁)) |
| 18 | 11, 12, 16, 17 | syl2an23an 1310 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ (𝑀...𝑁)) |
| 19 | 9, 10, 18 | ifcldadc 3590 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) ∈ ℂ) |
| 20 | 1, 4, 5, 19 | fvmptd3 5655 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0)) |
| 21 | 6 | ifeq1d 3578 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0)) |
| 22 | 20, 21 | eqtrd 2229 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0)) |
| 23 | | elfzuz 10096 |
. . . 4
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 24 | 23, 7 | sylan2 286 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| 25 | | ssidd 3204 |
. . 3
⊢ (𝜑 → (𝑀...𝑁) ⊆ (𝑀...𝑁)) |
| 26 | 22, 13, 24, 18, 25 | fsumsersdc 11560 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)))‘𝑁)) |
| 27 | 23, 20 | sylan2 286 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0)) |
| 28 | | iftrue 3566 |
. . . . 5
⊢ (𝑘 ∈ (𝑀...𝑁) → if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) = (𝐹‘𝑘)) |
| 29 | 28 | adantl 277 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) = (𝐹‘𝑘)) |
| 30 | 27, 29 | eqtrd 2229 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = (𝐹‘𝑘)) |
| 31 | | eleq1w 2257 |
. . . . . 6
⊢ (𝑚 = 𝑥 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ (𝑀...𝑁))) |
| 32 | | fveq2 5558 |
. . . . . 6
⊢ (𝑚 = 𝑥 → (𝐹‘𝑚) = (𝐹‘𝑥)) |
| 33 | 31, 32 | ifbieq1d 3583 |
. . . . 5
⊢ (𝑚 = 𝑥 → if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0) = if(𝑥 ∈ (𝑀...𝑁), (𝐹‘𝑥), 0)) |
| 34 | | simpr 110 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
| 35 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) |
| 36 | 35 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑘 = 𝑥 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑥) ∈ ℂ)) |
| 37 | 8 | ralrimiva 2570 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ) |
| 38 | 37 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ∀𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ) |
| 39 | 36, 38, 34 | rspcdva 2873 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ ℂ) |
| 40 | | 0cnd 8019 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 0 ∈
ℂ) |
| 41 | | eluzelz 9610 |
. . . . . . 7
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → 𝑥 ∈ ℤ) |
| 42 | | eluzel2 9606 |
. . . . . . 7
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 43 | 15 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) |
| 44 | | fzdcel 10115 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑥
∈ (𝑀...𝑁)) |
| 45 | 41, 42, 43, 44 | syl2an23an 1310 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → DECID
𝑥 ∈ (𝑀...𝑁)) |
| 46 | 39, 40, 45 | ifcldcd 3597 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → if(𝑥 ∈ (𝑀...𝑁), (𝐹‘𝑥), 0) ∈ ℂ) |
| 47 | 1, 33, 34, 46 | fvmptd3 5655 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑥) = if(𝑥 ∈ (𝑀...𝑁), (𝐹‘𝑥), 0)) |
| 48 | 47, 46 | eqeltrd 2273 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑥) ∈ ℂ) |
| 49 | 36 | cbvralv 2729 |
. . . . 5
⊢
(∀𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ ↔ ∀𝑥 ∈
(ℤ≥‘𝑀)(𝐹‘𝑥) ∈ ℂ) |
| 50 | 37, 49 | sylib 122 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ ℂ) |
| 51 | 50 | r19.21bi 2585 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ ℂ) |
| 52 | | addcl 8004 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
| 53 | 52 | adantl 277 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
| 54 | 13, 30, 48, 51, 53 | seq3fveq 10571 |
. 2
⊢ (𝜑 → (seq𝑀( + , (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 55 | 26, 54 | eqtrd 2229 |
1
⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁)) |