ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3ser GIF version

Theorem fsum3ser 11543
Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 11558 and fsump1 11566, which should make our notation clear and from which, along with closure fsumcl 11546, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.)
Hypotheses
Ref Expression
fsum3ser.1 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = 𝐴)
fsum3ser.2 (𝜑𝑁 ∈ (ℤ𝑀))
fsum3ser.3 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fsum3ser (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fsum3ser
Dummy variables 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . . 5 (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)) = (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))
2 eleq1w 2254 . . . . . 6 (𝑚 = 𝑘 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ (𝑀...𝑁)))
3 fveq2 5555 . . . . . 6 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
42, 3ifbieq1d 3580 . . . . 5 (𝑚 = 𝑘 → if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
5 simpr 110 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
6 fsum3ser.1 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = 𝐴)
7 fsum3ser.3 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
86, 7eqeltrd 2270 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
98adantr 276 . . . . . 6 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
10 0cnd 8014 . . . . . 6 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ¬ 𝑘 ∈ (𝑀...𝑁)) → 0 ∈ ℂ)
11 eluzelz 9604 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
12 eluzel2 9600 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
13 fsum3ser.2 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
14 eluzelz 9604 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1513, 14syl 14 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
1615adantr 276 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
17 fzdcel 10109 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑘 ∈ (𝑀...𝑁))
1811, 12, 16, 17syl2an23an 1310 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘 ∈ (𝑀...𝑁))
199, 10, 18ifcldadc 3587 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) ∈ ℂ)
201, 4, 5, 19fvmptd3 5652 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
216ifeq1d 3575 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0))
2220, 21eqtrd 2226 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0))
23 elfzuz 10090 . . . 4 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
2423, 7sylan2 286 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
25 ssidd 3201 . . 3 (𝜑 → (𝑀...𝑁) ⊆ (𝑀...𝑁))
2622, 13, 24, 18, 25fsumsersdc 11541 . 2 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)))‘𝑁))
2723, 20sylan2 286 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
28 iftrue 3563 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = (𝐹𝑘))
2928adantl 277 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = (𝐹𝑘))
3027, 29eqtrd 2226 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = (𝐹𝑘))
31 eleq1w 2254 . . . . . 6 (𝑚 = 𝑥 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ (𝑀...𝑁)))
32 fveq2 5555 . . . . . 6 (𝑚 = 𝑥 → (𝐹𝑚) = (𝐹𝑥))
3331, 32ifbieq1d 3580 . . . . 5 (𝑚 = 𝑥 → if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0) = if(𝑥 ∈ (𝑀...𝑁), (𝐹𝑥), 0))
34 simpr 110 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
35 fveq2 5555 . . . . . . . 8 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
3635eleq1d 2262 . . . . . . 7 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑥) ∈ ℂ))
378ralrimiva 2567 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
3837adantr 276 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
3936, 38, 34rspcdva 2870 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℂ)
40 0cnd 8014 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 0 ∈ ℂ)
41 eluzelz 9604 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
42 eluzel2 9600 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
4315adantr 276 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
44 fzdcel 10109 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑥 ∈ (𝑀...𝑁))
4541, 42, 43, 44syl2an23an 1310 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → DECID 𝑥 ∈ (𝑀...𝑁))
4639, 40, 45ifcldcd 3594 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → if(𝑥 ∈ (𝑀...𝑁), (𝐹𝑥), 0) ∈ ℂ)
471, 33, 34, 46fvmptd3 5652 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑥) = if(𝑥 ∈ (𝑀...𝑁), (𝐹𝑥), 0))
4847, 46eqeltrd 2270 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑥) ∈ ℂ)
4936cbvralv 2726 . . . . 5 (∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ ↔ ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ ℂ)
5037, 49sylib 122 . . . 4 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ ℂ)
5150r19.21bi 2582 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℂ)
52 addcl 7999 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
5352adantl 277 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
5413, 30, 48, 51, 53seq3fveq 10553 . 2 (𝜑 → (seq𝑀( + , (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁))
5526, 54eqtrd 2226 1 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2164  wral 2472  ifcif 3558  cmpt 4091  cfv 5255  (class class class)co 5919  cc 7872  0cc0 7874   + caddc 7877  cz 9320  cuz 9595  ...cfz 10077  seqcseq 10521  Σcsu 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500
This theorem is referenced by:  isumclim3  11569  iserabs  11621  isumsplit  11637  trireciplem  11646  geolim  11657  geo2lim  11662  cvgratnnlemseq  11672  mertenslem2  11682  mertensabs  11683  efcvgfsum  11813  effsumlt  11838  cvgcmp2nlemabs  15592
  Copyright terms: Public domain W3C validator