ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3ser GIF version

Theorem fsum3ser 11581
Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 11596 and fsump1 11604, which should make our notation clear and from which, along with closure fsumcl 11584, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.)
Hypotheses
Ref Expression
fsum3ser.1 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = 𝐴)
fsum3ser.2 (𝜑𝑁 ∈ (ℤ𝑀))
fsum3ser.3 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fsum3ser (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fsum3ser
Dummy variables 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . . 5 (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)) = (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))
2 eleq1w 2257 . . . . . 6 (𝑚 = 𝑘 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ (𝑀...𝑁)))
3 fveq2 5561 . . . . . 6 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
42, 3ifbieq1d 3584 . . . . 5 (𝑚 = 𝑘 → if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
5 simpr 110 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
6 fsum3ser.1 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = 𝐴)
7 fsum3ser.3 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
86, 7eqeltrd 2273 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
98adantr 276 . . . . . 6 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
10 0cnd 8038 . . . . . 6 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ¬ 𝑘 ∈ (𝑀...𝑁)) → 0 ∈ ℂ)
11 eluzelz 9629 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
12 eluzel2 9625 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
13 fsum3ser.2 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
14 eluzelz 9629 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1513, 14syl 14 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
1615adantr 276 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
17 fzdcel 10134 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑘 ∈ (𝑀...𝑁))
1811, 12, 16, 17syl2an23an 1310 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘 ∈ (𝑀...𝑁))
199, 10, 18ifcldadc 3591 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) ∈ ℂ)
201, 4, 5, 19fvmptd3 5658 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
216ifeq1d 3579 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0))
2220, 21eqtrd 2229 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0))
23 elfzuz 10115 . . . 4 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
2423, 7sylan2 286 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
25 ssidd 3205 . . 3 (𝜑 → (𝑀...𝑁) ⊆ (𝑀...𝑁))
2622, 13, 24, 18, 25fsumsersdc 11579 . 2 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)))‘𝑁))
2723, 20sylan2 286 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
28 iftrue 3567 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = (𝐹𝑘))
2928adantl 277 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = (𝐹𝑘))
3027, 29eqtrd 2229 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = (𝐹𝑘))
31 eleq1w 2257 . . . . . 6 (𝑚 = 𝑥 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ (𝑀...𝑁)))
32 fveq2 5561 . . . . . 6 (𝑚 = 𝑥 → (𝐹𝑚) = (𝐹𝑥))
3331, 32ifbieq1d 3584 . . . . 5 (𝑚 = 𝑥 → if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0) = if(𝑥 ∈ (𝑀...𝑁), (𝐹𝑥), 0))
34 simpr 110 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
35 fveq2 5561 . . . . . . . 8 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
3635eleq1d 2265 . . . . . . 7 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑥) ∈ ℂ))
378ralrimiva 2570 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
3837adantr 276 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
3936, 38, 34rspcdva 2873 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℂ)
40 0cnd 8038 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 0 ∈ ℂ)
41 eluzelz 9629 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
42 eluzel2 9625 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
4315adantr 276 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
44 fzdcel 10134 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑥 ∈ (𝑀...𝑁))
4541, 42, 43, 44syl2an23an 1310 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → DECID 𝑥 ∈ (𝑀...𝑁))
4639, 40, 45ifcldcd 3598 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → if(𝑥 ∈ (𝑀...𝑁), (𝐹𝑥), 0) ∈ ℂ)
471, 33, 34, 46fvmptd3 5658 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑥) = if(𝑥 ∈ (𝑀...𝑁), (𝐹𝑥), 0))
4847, 46eqeltrd 2273 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑥) ∈ ℂ)
4936cbvralv 2729 . . . . 5 (∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ ↔ ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ ℂ)
5037, 49sylib 122 . . . 4 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ ℂ)
5150r19.21bi 2585 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℂ)
52 addcl 8023 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
5352adantl 277 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
5413, 30, 48, 51, 53seq3fveq 10590 . 2 (𝜑 → (seq𝑀( + , (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)))‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁))
5526, 54eqtrd 2229 1 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  ifcif 3562  cmpt 4095  cfv 5259  (class class class)co 5925  cc 7896  0cc0 7898   + caddc 7901  cz 9345  cuz 9620  ...cfz 10102  seqcseq 10558  Σcsu 11537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538
This theorem is referenced by:  isumclim3  11607  iserabs  11659  isumsplit  11675  trireciplem  11684  geolim  11695  geo2lim  11700  cvgratnnlemseq  11710  mertenslem2  11720  mertensabs  11721  efcvgfsum  11851  effsumlt  11876  cvgcmp2nlemabs  15789
  Copyright terms: Public domain W3C validator