![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fsum3ser | GIF version |
Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 10860 and fsump1 10868, which should make our notation clear and from which, along with closure fsumcl 10848, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.) |
Ref | Expression |
---|---|
fsum3ser.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = 𝐴) |
fsum3ser.2 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
fsum3ser.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
fsum3ser | ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsum3ser.1 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = 𝐴) | |
2 | fsum3ser.2 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
3 | fsum3ser.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ) | |
4 | 1, 2, 3 | fisumser 10844 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹, ℂ)‘𝑁)) |
5 | eluzel2 9078 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
6 | 2, 5 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
7 | 1, 3 | eqeltrd 2165 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
8 | 6, 7 | iseqseq3 9956 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹, ℂ) = seq𝑀( + , 𝐹)) |
9 | 8 | fveq1d 5320 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹, ℂ)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)) |
10 | 4, 9 | eqtrd 2121 | 1 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1290 ∈ wcel 1439 ‘cfv 5028 (class class class)co 5666 ℂcc 7402 + caddc 7407 ℤcz 8804 ℤ≥cuz 9073 ...cfz 9478 seqcseq4 9905 seqcseq 9906 Σcsu 10796 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-coll 3960 ax-sep 3963 ax-nul 3971 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-iinf 4416 ax-cnex 7490 ax-resscn 7491 ax-1cn 7492 ax-1re 7493 ax-icn 7494 ax-addcl 7495 ax-addrcl 7496 ax-mulcl 7497 ax-mulrcl 7498 ax-addcom 7499 ax-mulcom 7500 ax-addass 7501 ax-mulass 7502 ax-distr 7503 ax-i2m1 7504 ax-0lt1 7505 ax-1rid 7506 ax-0id 7507 ax-rnegex 7508 ax-precex 7509 ax-cnre 7510 ax-pre-ltirr 7511 ax-pre-ltwlin 7512 ax-pre-lttrn 7513 ax-pre-apti 7514 ax-pre-ltadd 7515 ax-pre-mulgt0 7516 ax-pre-mulext 7517 ax-arch 7518 ax-caucvg 7519 |
This theorem depends on definitions: df-bi 116 df-dc 782 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rmo 2368 df-rab 2369 df-v 2622 df-sbc 2842 df-csb 2935 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-nul 3288 df-if 3398 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-iun 3738 df-br 3852 df-opab 3906 df-mpt 3907 df-tr 3943 df-id 4129 df-po 4132 df-iso 4133 df-iord 4202 df-on 4204 df-ilim 4205 df-suc 4207 df-iom 4419 df-xp 4457 df-rel 4458 df-cnv 4459 df-co 4460 df-dm 4461 df-rn 4462 df-res 4463 df-ima 4464 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-f1 5033 df-fo 5034 df-f1o 5035 df-fv 5036 df-isom 5037 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-1st 5925 df-2nd 5926 df-recs 6084 df-irdg 6149 df-frec 6170 df-1o 6195 df-oadd 6199 df-er 6306 df-en 6512 df-dom 6513 df-fin 6514 df-pnf 7578 df-mnf 7579 df-xr 7580 df-ltxr 7581 df-le 7582 df-sub 7709 df-neg 7710 df-reap 8106 df-ap 8113 df-div 8194 df-inn 8477 df-2 8535 df-3 8536 df-4 8537 df-n0 8728 df-z 8805 df-uz 9074 df-q 9159 df-rp 9189 df-fz 9479 df-fzo 9608 df-iseq 9907 df-seq3 9908 df-exp 10009 df-ihash 10238 df-cj 10330 df-re 10331 df-im 10332 df-rsqrt 10485 df-abs 10486 df-clim 10721 df-isum 10797 |
This theorem is referenced by: iserabs 10923 isumsplit 10939 trireciplem 10948 geolim 10959 geo2lim 10964 cvgratnnlemseq 10974 mertenslem2 10984 mertensabs 10985 efcvgfsum 11011 effsumlt 11036 |
Copyright terms: Public domain | W3C validator |