ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prnmaxl GIF version

Theorem prnmaxl 7308
Description: A lower cut has no largest member. (Contributed by Jim Kingdon, 29-Sep-2019.)
Assertion
Ref Expression
prnmaxl ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → ∃𝑥𝐿 𝐵 <Q 𝑥)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐿   𝑥,𝑈

Proof of Theorem prnmaxl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elprnql 7301 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → 𝐵Q)
2 elinp 7294 . . . . . . . 8 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑦Q 𝑦𝐿 ∧ ∃𝑥Q 𝑥𝑈)) ∧ ((∀𝑦Q (𝑦𝐿 ↔ ∃𝑥Q (𝑦 <Q 𝑥𝑥𝐿)) ∧ ∀𝑥Q (𝑥𝑈 ↔ ∃𝑦Q (𝑦 <Q 𝑥𝑦𝑈))) ∧ ∀𝑦Q ¬ (𝑦𝐿𝑦𝑈) ∧ ∀𝑦Q𝑥Q (𝑦 <Q 𝑥 → (𝑦𝐿𝑥𝑈)))))
3 simpr1l 1038 . . . . . . . 8 ((((𝐿Q𝑈Q) ∧ (∃𝑦Q 𝑦𝐿 ∧ ∃𝑥Q 𝑥𝑈)) ∧ ((∀𝑦Q (𝑦𝐿 ↔ ∃𝑥Q (𝑦 <Q 𝑥𝑥𝐿)) ∧ ∀𝑥Q (𝑥𝑈 ↔ ∃𝑦Q (𝑦 <Q 𝑥𝑦𝑈))) ∧ ∀𝑦Q ¬ (𝑦𝐿𝑦𝑈) ∧ ∀𝑦Q𝑥Q (𝑦 <Q 𝑥 → (𝑦𝐿𝑥𝑈)))) → ∀𝑦Q (𝑦𝐿 ↔ ∃𝑥Q (𝑦 <Q 𝑥𝑥𝐿)))
42, 3sylbi 120 . . . . . . 7 (⟨𝐿, 𝑈⟩ ∈ P → ∀𝑦Q (𝑦𝐿 ↔ ∃𝑥Q (𝑦 <Q 𝑥𝑥𝐿)))
5 eleq1 2202 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑦𝐿𝐵𝐿))
6 breq1 3932 . . . . . . . . . . 11 (𝑦 = 𝐵 → (𝑦 <Q 𝑥𝐵 <Q 𝑥))
76anbi1d 460 . . . . . . . . . 10 (𝑦 = 𝐵 → ((𝑦 <Q 𝑥𝑥𝐿) ↔ (𝐵 <Q 𝑥𝑥𝐿)))
87rexbidv 2438 . . . . . . . . 9 (𝑦 = 𝐵 → (∃𝑥Q (𝑦 <Q 𝑥𝑥𝐿) ↔ ∃𝑥Q (𝐵 <Q 𝑥𝑥𝐿)))
95, 8bibi12d 234 . . . . . . . 8 (𝑦 = 𝐵 → ((𝑦𝐿 ↔ ∃𝑥Q (𝑦 <Q 𝑥𝑥𝐿)) ↔ (𝐵𝐿 ↔ ∃𝑥Q (𝐵 <Q 𝑥𝑥𝐿))))
109rspcv 2785 . . . . . . 7 (𝐵Q → (∀𝑦Q (𝑦𝐿 ↔ ∃𝑥Q (𝑦 <Q 𝑥𝑥𝐿)) → (𝐵𝐿 ↔ ∃𝑥Q (𝐵 <Q 𝑥𝑥𝐿))))
11 bi1 117 . . . . . . 7 ((𝐵𝐿 ↔ ∃𝑥Q (𝐵 <Q 𝑥𝑥𝐿)) → (𝐵𝐿 → ∃𝑥Q (𝐵 <Q 𝑥𝑥𝐿)))
124, 10, 11syl56 34 . . . . . 6 (𝐵Q → (⟨𝐿, 𝑈⟩ ∈ P → (𝐵𝐿 → ∃𝑥Q (𝐵 <Q 𝑥𝑥𝐿))))
1312impd 252 . . . . 5 (𝐵Q → ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → ∃𝑥Q (𝐵 <Q 𝑥𝑥𝐿)))
141, 13mpcom 36 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → ∃𝑥Q (𝐵 <Q 𝑥𝑥𝐿))
15 df-rex 2422 . . . 4 (∃𝑥Q (𝐵 <Q 𝑥𝑥𝐿) ↔ ∃𝑥(𝑥Q ∧ (𝐵 <Q 𝑥𝑥𝐿)))
1614, 15sylib 121 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → ∃𝑥(𝑥Q ∧ (𝐵 <Q 𝑥𝑥𝐿)))
17 ltrelnq 7185 . . . . . . . . 9 <Q ⊆ (Q × Q)
1817brel 4591 . . . . . . . 8 (𝐵 <Q 𝑥 → (𝐵Q𝑥Q))
1918simprd 113 . . . . . . 7 (𝐵 <Q 𝑥𝑥Q)
2019pm4.71ri 389 . . . . . 6 (𝐵 <Q 𝑥 ↔ (𝑥Q𝐵 <Q 𝑥))
2120anbi1i 453 . . . . 5 ((𝐵 <Q 𝑥𝑥𝐿) ↔ ((𝑥Q𝐵 <Q 𝑥) ∧ 𝑥𝐿))
22 ancom 264 . . . . 5 ((𝐵 <Q 𝑥𝑥𝐿) ↔ (𝑥𝐿𝐵 <Q 𝑥))
23 anass 398 . . . . 5 (((𝑥Q𝐵 <Q 𝑥) ∧ 𝑥𝐿) ↔ (𝑥Q ∧ (𝐵 <Q 𝑥𝑥𝐿)))
2421, 22, 233bitr3i 209 . . . 4 ((𝑥𝐿𝐵 <Q 𝑥) ↔ (𝑥Q ∧ (𝐵 <Q 𝑥𝑥𝐿)))
2524exbii 1584 . . 3 (∃𝑥(𝑥𝐿𝐵 <Q 𝑥) ↔ ∃𝑥(𝑥Q ∧ (𝐵 <Q 𝑥𝑥𝐿)))
2616, 25sylibr 133 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → ∃𝑥(𝑥𝐿𝐵 <Q 𝑥))
27 df-rex 2422 . 2 (∃𝑥𝐿 𝐵 <Q 𝑥 ↔ ∃𝑥(𝑥𝐿𝐵 <Q 𝑥))
2826, 27sylibr 133 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → ∃𝑥𝐿 𝐵 <Q 𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wex 1468  wcel 1480  wral 2416  wrex 2417  wss 3071  cop 3530   class class class wbr 3929  Qcnq 7100   <Q cltq 7105  Pcnp 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-qs 6435  df-ni 7124  df-nqqs 7168  df-ltnqqs 7173  df-inp 7286
This theorem is referenced by:  prnmaddl  7310  genprndl  7341  nqprl  7371  1idprl  7410  ltsopr  7416  ltexprlemm  7420  ltexprlemopl  7421  recexprlemloc  7451  recexprlem1ssl  7453  aptiprleml  7459  caucvgprprlemopl  7517  suplocexprlemrl  7537
  Copyright terms: Public domain W3C validator