ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prnmaxl GIF version

Theorem prnmaxl 7450
Description: A lower cut has no largest member. (Contributed by Jim Kingdon, 29-Sep-2019.)
Assertion
Ref Expression
prnmaxl ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → ∃𝑥𝐿 𝐵 <Q 𝑥)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐿   𝑥,𝑈

Proof of Theorem prnmaxl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elprnql 7443 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → 𝐵Q)
2 elinp 7436 . . . . . . . 8 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑦Q 𝑦𝐿 ∧ ∃𝑥Q 𝑥𝑈)) ∧ ((∀𝑦Q (𝑦𝐿 ↔ ∃𝑥Q (𝑦 <Q 𝑥𝑥𝐿)) ∧ ∀𝑥Q (𝑥𝑈 ↔ ∃𝑦Q (𝑦 <Q 𝑥𝑦𝑈))) ∧ ∀𝑦Q ¬ (𝑦𝐿𝑦𝑈) ∧ ∀𝑦Q𝑥Q (𝑦 <Q 𝑥 → (𝑦𝐿𝑥𝑈)))))
3 simpr1l 1049 . . . . . . . 8 ((((𝐿Q𝑈Q) ∧ (∃𝑦Q 𝑦𝐿 ∧ ∃𝑥Q 𝑥𝑈)) ∧ ((∀𝑦Q (𝑦𝐿 ↔ ∃𝑥Q (𝑦 <Q 𝑥𝑥𝐿)) ∧ ∀𝑥Q (𝑥𝑈 ↔ ∃𝑦Q (𝑦 <Q 𝑥𝑦𝑈))) ∧ ∀𝑦Q ¬ (𝑦𝐿𝑦𝑈) ∧ ∀𝑦Q𝑥Q (𝑦 <Q 𝑥 → (𝑦𝐿𝑥𝑈)))) → ∀𝑦Q (𝑦𝐿 ↔ ∃𝑥Q (𝑦 <Q 𝑥𝑥𝐿)))
42, 3sylbi 120 . . . . . . 7 (⟨𝐿, 𝑈⟩ ∈ P → ∀𝑦Q (𝑦𝐿 ↔ ∃𝑥Q (𝑦 <Q 𝑥𝑥𝐿)))
5 eleq1 2233 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑦𝐿𝐵𝐿))
6 breq1 3992 . . . . . . . . . . 11 (𝑦 = 𝐵 → (𝑦 <Q 𝑥𝐵 <Q 𝑥))
76anbi1d 462 . . . . . . . . . 10 (𝑦 = 𝐵 → ((𝑦 <Q 𝑥𝑥𝐿) ↔ (𝐵 <Q 𝑥𝑥𝐿)))
87rexbidv 2471 . . . . . . . . 9 (𝑦 = 𝐵 → (∃𝑥Q (𝑦 <Q 𝑥𝑥𝐿) ↔ ∃𝑥Q (𝐵 <Q 𝑥𝑥𝐿)))
95, 8bibi12d 234 . . . . . . . 8 (𝑦 = 𝐵 → ((𝑦𝐿 ↔ ∃𝑥Q (𝑦 <Q 𝑥𝑥𝐿)) ↔ (𝐵𝐿 ↔ ∃𝑥Q (𝐵 <Q 𝑥𝑥𝐿))))
109rspcv 2830 . . . . . . 7 (𝐵Q → (∀𝑦Q (𝑦𝐿 ↔ ∃𝑥Q (𝑦 <Q 𝑥𝑥𝐿)) → (𝐵𝐿 ↔ ∃𝑥Q (𝐵 <Q 𝑥𝑥𝐿))))
11 biimp 117 . . . . . . 7 ((𝐵𝐿 ↔ ∃𝑥Q (𝐵 <Q 𝑥𝑥𝐿)) → (𝐵𝐿 → ∃𝑥Q (𝐵 <Q 𝑥𝑥𝐿)))
124, 10, 11syl56 34 . . . . . 6 (𝐵Q → (⟨𝐿, 𝑈⟩ ∈ P → (𝐵𝐿 → ∃𝑥Q (𝐵 <Q 𝑥𝑥𝐿))))
1312impd 252 . . . . 5 (𝐵Q → ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → ∃𝑥Q (𝐵 <Q 𝑥𝑥𝐿)))
141, 13mpcom 36 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → ∃𝑥Q (𝐵 <Q 𝑥𝑥𝐿))
15 df-rex 2454 . . . 4 (∃𝑥Q (𝐵 <Q 𝑥𝑥𝐿) ↔ ∃𝑥(𝑥Q ∧ (𝐵 <Q 𝑥𝑥𝐿)))
1614, 15sylib 121 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → ∃𝑥(𝑥Q ∧ (𝐵 <Q 𝑥𝑥𝐿)))
17 ltrelnq 7327 . . . . . . . . 9 <Q ⊆ (Q × Q)
1817brel 4663 . . . . . . . 8 (𝐵 <Q 𝑥 → (𝐵Q𝑥Q))
1918simprd 113 . . . . . . 7 (𝐵 <Q 𝑥𝑥Q)
2019pm4.71ri 390 . . . . . 6 (𝐵 <Q 𝑥 ↔ (𝑥Q𝐵 <Q 𝑥))
2120anbi1i 455 . . . . 5 ((𝐵 <Q 𝑥𝑥𝐿) ↔ ((𝑥Q𝐵 <Q 𝑥) ∧ 𝑥𝐿))
22 ancom 264 . . . . 5 ((𝐵 <Q 𝑥𝑥𝐿) ↔ (𝑥𝐿𝐵 <Q 𝑥))
23 anass 399 . . . . 5 (((𝑥Q𝐵 <Q 𝑥) ∧ 𝑥𝐿) ↔ (𝑥Q ∧ (𝐵 <Q 𝑥𝑥𝐿)))
2421, 22, 233bitr3i 209 . . . 4 ((𝑥𝐿𝐵 <Q 𝑥) ↔ (𝑥Q ∧ (𝐵 <Q 𝑥𝑥𝐿)))
2524exbii 1598 . . 3 (∃𝑥(𝑥𝐿𝐵 <Q 𝑥) ↔ ∃𝑥(𝑥Q ∧ (𝐵 <Q 𝑥𝑥𝐿)))
2616, 25sylibr 133 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → ∃𝑥(𝑥𝐿𝐵 <Q 𝑥))
27 df-rex 2454 . 2 (∃𝑥𝐿 𝐵 <Q 𝑥 ↔ ∃𝑥(𝑥𝐿𝐵 <Q 𝑥))
2826, 27sylibr 133 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → ∃𝑥𝐿 𝐵 <Q 𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  w3a 973   = wceq 1348  wex 1485  wcel 2141  wral 2448  wrex 2449  wss 3121  cop 3586   class class class wbr 3989  Qcnq 7242   <Q cltq 7247  Pcnp 7253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-qs 6519  df-ni 7266  df-nqqs 7310  df-ltnqqs 7315  df-inp 7428
This theorem is referenced by:  prnmaddl  7452  genprndl  7483  nqprl  7513  1idprl  7552  ltsopr  7558  ltexprlemm  7562  ltexprlemopl  7563  recexprlemloc  7593  recexprlem1ssl  7595  aptiprleml  7601  caucvgprprlemopl  7659  suplocexprlemrl  7679
  Copyright terms: Public domain W3C validator