| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcimdv | GIF version | ||
| Description: Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1471). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.) |
| Ref | Expression |
|---|---|
| sbcimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| sbcimdv | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 2998 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 → 𝐴 ∈ V) | |
| 2 | sbcimdv.1 | . . . . 5 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 2 | alrimiv 1888 | . . . 4 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) |
| 4 | spsbc 3001 | . . . 4 ⊢ (𝐴 ∈ V → (∀𝑥(𝜓 → 𝜒) → [𝐴 / 𝑥](𝜓 → 𝜒))) | |
| 5 | sbcim1 3038 | . . . 4 ⊢ ([𝐴 / 𝑥](𝜓 → 𝜒) → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) | |
| 6 | 3, 4, 5 | syl56 34 | . . 3 ⊢ (𝐴 ∈ V → (𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))) |
| 7 | 6 | com3l 81 | . 2 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 → (𝐴 ∈ V → [𝐴 / 𝑥]𝜒))) |
| 8 | 1, 7 | mpdi 43 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 ∈ wcel 2167 Vcvv 2763 [wsbc 2989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sbc 2990 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |