![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbcimdv | GIF version |
Description: Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1401). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.) |
Ref | Expression |
---|---|
sbcimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
sbcimdv | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 2870 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 → 𝐴 ∈ V) | |
2 | sbcimdv.1 | . . . . 5 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 2 | alrimiv 1813 | . . . 4 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) |
4 | spsbc 2873 | . . . 4 ⊢ (𝐴 ∈ V → (∀𝑥(𝜓 → 𝜒) → [𝐴 / 𝑥](𝜓 → 𝜒))) | |
5 | sbcim1 2909 | . . . 4 ⊢ ([𝐴 / 𝑥](𝜓 → 𝜒) → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) | |
6 | 3, 4, 5 | syl56 34 | . . 3 ⊢ (𝐴 ∈ V → (𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))) |
7 | 6 | com3l 81 | . 2 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 → (𝐴 ∈ V → [𝐴 / 𝑥]𝜒))) |
8 | 1, 7 | mpdi 43 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1297 ∈ wcel 1448 Vcvv 2641 [wsbc 2862 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-sbc 2863 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |