ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcimdv GIF version

Theorem sbcimdv 2926
Description: Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1401). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.)
Hypothesis
Ref Expression
sbcimdv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
sbcimdv (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem sbcimdv
StepHypRef Expression
1 sbcex 2870 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ V)
2 sbcimdv.1 . . . . 5 (𝜑 → (𝜓𝜒))
32alrimiv 1813 . . . 4 (𝜑 → ∀𝑥(𝜓𝜒))
4 spsbc 2873 . . . 4 (𝐴 ∈ V → (∀𝑥(𝜓𝜒) → [𝐴 / 𝑥](𝜓𝜒)))
5 sbcim1 2909 . . . 4 ([𝐴 / 𝑥](𝜓𝜒) → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
63, 4, 5syl56 34 . . 3 (𝐴 ∈ V → (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))
76com3l 81 . 2 (𝜑 → ([𝐴 / 𝑥]𝜓 → (𝐴 ∈ V → [𝐴 / 𝑥]𝜒)))
81, 7mpdi 43 1 (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1297  wcel 1448  Vcvv 2641  [wsbc 2862
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-sbc 2863
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator