ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbv2w GIF version

Theorem cbv2w 1738
Description: Rule used to change bound variables, using implicit substitution. Version of cbv2 1737 with a disjoint variable condition. (Contributed by NM, 5-Aug-1993.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbv2w.1 𝑥𝜑
cbv2w.2 𝑦𝜑
cbv2w.3 (𝜑 → Ⅎ𝑦𝜓)
cbv2w.4 (𝜑 → Ⅎ𝑥𝜒)
cbv2w.5 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
cbv2w (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem cbv2w
StepHypRef Expression
1 cbv2w.1 . . 3 𝑥𝜑
2 cbv2w.2 . . 3 𝑦𝜑
3 cbv2w.3 . . 3 (𝜑 → Ⅎ𝑦𝜓)
4 cbv2w.4 . . 3 (𝜑 → Ⅎ𝑥𝜒)
5 cbv2w.5 . . . 4 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
6 biimp 117 . . . 4 ((𝜓𝜒) → (𝜓𝜒))
75, 6syl6 33 . . 3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
81, 2, 3, 4, 7cbv1v 1735 . 2 (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒))
9 equcomi 1692 . . . 4 (𝑦 = 𝑥𝑥 = 𝑦)
10 biimpr 129 . . . 4 ((𝜓𝜒) → (𝜒𝜓))
119, 5, 10syl56 34 . . 3 (𝜑 → (𝑦 = 𝑥 → (𝜒𝜓)))
122, 1, 4, 3, 11cbv1v 1735 . 2 (𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓))
138, 12impbid 128 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341  wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator