| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbv2w | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbv2 1771 with a disjoint variable condition. (Contributed by NM, 5-Aug-1993.) (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbv2w.1 | ⊢ Ⅎ𝑥𝜑 |
| cbv2w.2 | ⊢ Ⅎ𝑦𝜑 |
| cbv2w.3 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
| cbv2w.4 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| cbv2w.5 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| cbv2w | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbv2w.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | cbv2w.2 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | cbv2w.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
| 4 | cbv2w.4 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 5 | cbv2w.5 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 6 | biimp 118 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) → (𝜓 → 𝜒)) | |
| 7 | 5, 6 | syl6 33 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) |
| 8 | 1, 2, 3, 4, 7 | cbv1v 1769 | . 2 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) |
| 9 | equcomi 1726 | . . . 4 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 10 | biimpr 130 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) → (𝜒 → 𝜓)) | |
| 11 | 9, 5, 10 | syl56 34 | . . 3 ⊢ (𝜑 → (𝑦 = 𝑥 → (𝜒 → 𝜓))) |
| 12 | 2, 1, 4, 3, 11 | cbv1v 1769 | . 2 ⊢ (𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓)) |
| 13 | 8, 12 | impbid 129 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1370 Ⅎwnf 1482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |