Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbv2w | GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbv2 1737 with a disjoint variable condition. (Contributed by NM, 5-Aug-1993.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbv2w.1 | ⊢ Ⅎ𝑥𝜑 |
cbv2w.2 | ⊢ Ⅎ𝑦𝜑 |
cbv2w.3 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
cbv2w.4 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
cbv2w.5 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
Ref | Expression |
---|---|
cbv2w | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbv2w.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | cbv2w.2 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | cbv2w.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
4 | cbv2w.4 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
5 | cbv2w.5 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
6 | biimp 117 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) → (𝜓 → 𝜒)) | |
7 | 5, 6 | syl6 33 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) |
8 | 1, 2, 3, 4, 7 | cbv1v 1735 | . 2 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) |
9 | equcomi 1692 | . . . 4 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
10 | biimpr 129 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) → (𝜒 → 𝜓)) | |
11 | 9, 5, 10 | syl56 34 | . . 3 ⊢ (𝜑 → (𝑦 = 𝑥 → (𝜒 → 𝜓))) |
12 | 2, 1, 4, 3, 11 | cbv1v 1735 | . 2 ⊢ (𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓)) |
13 | 8, 12 | impbid 128 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |