ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prnminu GIF version

Theorem prnminu 7421
Description: An upper cut has no smallest member. (Contributed by Jim Kingdon, 7-Nov-2019.)
Assertion
Ref Expression
prnminu ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → ∃𝑥𝑈 𝑥 <Q 𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐿   𝑥,𝑈

Proof of Theorem prnminu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elprnqu 7414 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → 𝐵Q)
2 elinp 7406 . . . . . . . 8 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑥Q 𝑥𝐿 ∧ ∃𝑦Q 𝑦𝑈)) ∧ ((∀𝑥Q (𝑥𝐿 ↔ ∃𝑦Q (𝑥 <Q 𝑦𝑦𝐿)) ∧ ∀𝑦Q (𝑦𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈))) ∧ ∀𝑥Q ¬ (𝑥𝐿𝑥𝑈) ∧ ∀𝑥Q𝑦Q (𝑥 <Q 𝑦 → (𝑥𝐿𝑦𝑈)))))
3 simpr1r 1044 . . . . . . . 8 ((((𝐿Q𝑈Q) ∧ (∃𝑥Q 𝑥𝐿 ∧ ∃𝑦Q 𝑦𝑈)) ∧ ((∀𝑥Q (𝑥𝐿 ↔ ∃𝑦Q (𝑥 <Q 𝑦𝑦𝐿)) ∧ ∀𝑦Q (𝑦𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈))) ∧ ∀𝑥Q ¬ (𝑥𝐿𝑥𝑈) ∧ ∀𝑥Q𝑦Q (𝑥 <Q 𝑦 → (𝑥𝐿𝑦𝑈)))) → ∀𝑦Q (𝑦𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈)))
42, 3sylbi 120 . . . . . . 7 (⟨𝐿, 𝑈⟩ ∈ P → ∀𝑦Q (𝑦𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈)))
5 eleq1 2227 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑦𝑈𝐵𝑈))
6 breq2 3980 . . . . . . . . . . 11 (𝑦 = 𝐵 → (𝑥 <Q 𝑦𝑥 <Q 𝐵))
76anbi1d 461 . . . . . . . . . 10 (𝑦 = 𝐵 → ((𝑥 <Q 𝑦𝑥𝑈) ↔ (𝑥 <Q 𝐵𝑥𝑈)))
87rexbidv 2465 . . . . . . . . 9 (𝑦 = 𝐵 → (∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈) ↔ ∃𝑥Q (𝑥 <Q 𝐵𝑥𝑈)))
95, 8bibi12d 234 . . . . . . . 8 (𝑦 = 𝐵 → ((𝑦𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈)) ↔ (𝐵𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝐵𝑥𝑈))))
109rspcv 2821 . . . . . . 7 (𝐵Q → (∀𝑦Q (𝑦𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈)) → (𝐵𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝐵𝑥𝑈))))
11 biimp 117 . . . . . . 7 ((𝐵𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝐵𝑥𝑈)) → (𝐵𝑈 → ∃𝑥Q (𝑥 <Q 𝐵𝑥𝑈)))
124, 10, 11syl56 34 . . . . . 6 (𝐵Q → (⟨𝐿, 𝑈⟩ ∈ P → (𝐵𝑈 → ∃𝑥Q (𝑥 <Q 𝐵𝑥𝑈))))
1312impd 252 . . . . 5 (𝐵Q → ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → ∃𝑥Q (𝑥 <Q 𝐵𝑥𝑈)))
141, 13mpcom 36 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → ∃𝑥Q (𝑥 <Q 𝐵𝑥𝑈))
15 df-rex 2448 . . . 4 (∃𝑥Q (𝑥 <Q 𝐵𝑥𝑈) ↔ ∃𝑥(𝑥Q ∧ (𝑥 <Q 𝐵𝑥𝑈)))
1614, 15sylib 121 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → ∃𝑥(𝑥Q ∧ (𝑥 <Q 𝐵𝑥𝑈)))
17 ltrelnq 7297 . . . . . . . . 9 <Q ⊆ (Q × Q)
1817brel 4650 . . . . . . . 8 (𝑥 <Q 𝐵 → (𝑥Q𝐵Q))
1918simpld 111 . . . . . . 7 (𝑥 <Q 𝐵𝑥Q)
2019pm4.71ri 390 . . . . . 6 (𝑥 <Q 𝐵 ↔ (𝑥Q𝑥 <Q 𝐵))
2120anbi1i 454 . . . . 5 ((𝑥 <Q 𝐵𝑥𝑈) ↔ ((𝑥Q𝑥 <Q 𝐵) ∧ 𝑥𝑈))
22 ancom 264 . . . . 5 ((𝑥 <Q 𝐵𝑥𝑈) ↔ (𝑥𝑈𝑥 <Q 𝐵))
23 anass 399 . . . . 5 (((𝑥Q𝑥 <Q 𝐵) ∧ 𝑥𝑈) ↔ (𝑥Q ∧ (𝑥 <Q 𝐵𝑥𝑈)))
2421, 22, 233bitr3i 209 . . . 4 ((𝑥𝑈𝑥 <Q 𝐵) ↔ (𝑥Q ∧ (𝑥 <Q 𝐵𝑥𝑈)))
2524exbii 1592 . . 3 (∃𝑥(𝑥𝑈𝑥 <Q 𝐵) ↔ ∃𝑥(𝑥Q ∧ (𝑥 <Q 𝐵𝑥𝑈)))
2616, 25sylibr 133 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → ∃𝑥(𝑥𝑈𝑥 <Q 𝐵))
27 df-rex 2448 . 2 (∃𝑥𝑈 𝑥 <Q 𝐵 ↔ ∃𝑥(𝑥𝑈𝑥 <Q 𝐵))
2826, 27sylibr 133 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → ∃𝑥𝑈 𝑥 <Q 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 967   = wceq 1342  wex 1479  wcel 2135  wral 2442  wrex 2443  wss 3111  cop 3573   class class class wbr 3976  Qcnq 7212   <Q cltq 7217  Pcnp 7223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-qs 6498  df-ni 7236  df-nqqs 7280  df-ltnqqs 7285  df-inp 7398
This theorem is referenced by:  genprndu  7454  nqpru  7484  1idpru  7523  ltsopr  7528  ltexprlemopu  7535  ltexprlemru  7544  addcanprlemu  7547  recexprlemloc  7563  recexprlem1ssu  7566  aptiprlemu  7572
  Copyright terms: Public domain W3C validator