ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prnminu GIF version

Theorem prnminu 7584
Description: An upper cut has no smallest member. (Contributed by Jim Kingdon, 7-Nov-2019.)
Assertion
Ref Expression
prnminu ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → ∃𝑥𝑈 𝑥 <Q 𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐿   𝑥,𝑈

Proof of Theorem prnminu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elprnqu 7577 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → 𝐵Q)
2 elinp 7569 . . . . . . . 8 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑥Q 𝑥𝐿 ∧ ∃𝑦Q 𝑦𝑈)) ∧ ((∀𝑥Q (𝑥𝐿 ↔ ∃𝑦Q (𝑥 <Q 𝑦𝑦𝐿)) ∧ ∀𝑦Q (𝑦𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈))) ∧ ∀𝑥Q ¬ (𝑥𝐿𝑥𝑈) ∧ ∀𝑥Q𝑦Q (𝑥 <Q 𝑦 → (𝑥𝐿𝑦𝑈)))))
3 simpr1r 1057 . . . . . . . 8 ((((𝐿Q𝑈Q) ∧ (∃𝑥Q 𝑥𝐿 ∧ ∃𝑦Q 𝑦𝑈)) ∧ ((∀𝑥Q (𝑥𝐿 ↔ ∃𝑦Q (𝑥 <Q 𝑦𝑦𝐿)) ∧ ∀𝑦Q (𝑦𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈))) ∧ ∀𝑥Q ¬ (𝑥𝐿𝑥𝑈) ∧ ∀𝑥Q𝑦Q (𝑥 <Q 𝑦 → (𝑥𝐿𝑦𝑈)))) → ∀𝑦Q (𝑦𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈)))
42, 3sylbi 121 . . . . . . 7 (⟨𝐿, 𝑈⟩ ∈ P → ∀𝑦Q (𝑦𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈)))
5 eleq1 2267 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑦𝑈𝐵𝑈))
6 breq2 4047 . . . . . . . . . . 11 (𝑦 = 𝐵 → (𝑥 <Q 𝑦𝑥 <Q 𝐵))
76anbi1d 465 . . . . . . . . . 10 (𝑦 = 𝐵 → ((𝑥 <Q 𝑦𝑥𝑈) ↔ (𝑥 <Q 𝐵𝑥𝑈)))
87rexbidv 2506 . . . . . . . . 9 (𝑦 = 𝐵 → (∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈) ↔ ∃𝑥Q (𝑥 <Q 𝐵𝑥𝑈)))
95, 8bibi12d 235 . . . . . . . 8 (𝑦 = 𝐵 → ((𝑦𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈)) ↔ (𝐵𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝐵𝑥𝑈))))
109rspcv 2872 . . . . . . 7 (𝐵Q → (∀𝑦Q (𝑦𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈)) → (𝐵𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝐵𝑥𝑈))))
11 biimp 118 . . . . . . 7 ((𝐵𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝐵𝑥𝑈)) → (𝐵𝑈 → ∃𝑥Q (𝑥 <Q 𝐵𝑥𝑈)))
124, 10, 11syl56 34 . . . . . 6 (𝐵Q → (⟨𝐿, 𝑈⟩ ∈ P → (𝐵𝑈 → ∃𝑥Q (𝑥 <Q 𝐵𝑥𝑈))))
1312impd 254 . . . . 5 (𝐵Q → ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → ∃𝑥Q (𝑥 <Q 𝐵𝑥𝑈)))
141, 13mpcom 36 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → ∃𝑥Q (𝑥 <Q 𝐵𝑥𝑈))
15 df-rex 2489 . . . 4 (∃𝑥Q (𝑥 <Q 𝐵𝑥𝑈) ↔ ∃𝑥(𝑥Q ∧ (𝑥 <Q 𝐵𝑥𝑈)))
1614, 15sylib 122 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → ∃𝑥(𝑥Q ∧ (𝑥 <Q 𝐵𝑥𝑈)))
17 ltrelnq 7460 . . . . . . . . 9 <Q ⊆ (Q × Q)
1817brel 4725 . . . . . . . 8 (𝑥 <Q 𝐵 → (𝑥Q𝐵Q))
1918simpld 112 . . . . . . 7 (𝑥 <Q 𝐵𝑥Q)
2019pm4.71ri 392 . . . . . 6 (𝑥 <Q 𝐵 ↔ (𝑥Q𝑥 <Q 𝐵))
2120anbi1i 458 . . . . 5 ((𝑥 <Q 𝐵𝑥𝑈) ↔ ((𝑥Q𝑥 <Q 𝐵) ∧ 𝑥𝑈))
22 ancom 266 . . . . 5 ((𝑥 <Q 𝐵𝑥𝑈) ↔ (𝑥𝑈𝑥 <Q 𝐵))
23 anass 401 . . . . 5 (((𝑥Q𝑥 <Q 𝐵) ∧ 𝑥𝑈) ↔ (𝑥Q ∧ (𝑥 <Q 𝐵𝑥𝑈)))
2421, 22, 233bitr3i 210 . . . 4 ((𝑥𝑈𝑥 <Q 𝐵) ↔ (𝑥Q ∧ (𝑥 <Q 𝐵𝑥𝑈)))
2524exbii 1627 . . 3 (∃𝑥(𝑥𝑈𝑥 <Q 𝐵) ↔ ∃𝑥(𝑥Q ∧ (𝑥 <Q 𝐵𝑥𝑈)))
2616, 25sylibr 134 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → ∃𝑥(𝑥𝑈𝑥 <Q 𝐵))
27 df-rex 2489 . 2 (∃𝑥𝑈 𝑥 <Q 𝐵 ↔ ∃𝑥(𝑥𝑈𝑥 <Q 𝐵))
2826, 27sylibr 134 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → ∃𝑥𝑈 𝑥 <Q 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1372  wex 1514  wcel 2175  wral 2483  wrex 2484  wss 3165  cop 3635   class class class wbr 4043  Qcnq 7375   <Q cltq 7380  Pcnp 7386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-qs 6616  df-ni 7399  df-nqqs 7443  df-ltnqqs 7448  df-inp 7561
This theorem is referenced by:  genprndu  7617  nqpru  7647  1idpru  7686  ltsopr  7691  ltexprlemopu  7698  ltexprlemru  7707  addcanprlemu  7710  recexprlemloc  7726  recexprlem1ssu  7729  aptiprlemu  7735
  Copyright terms: Public domain W3C validator