| Step | Hyp | Ref
| Expression |
| 1 | | euind.2 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| 2 | 1 | cbvexv 1933 |
. . . . 5
⊢
(∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| 3 | | euind.1 |
. . . . . . . . 9
⊢ 𝐵 ∈ V |
| 4 | 3 | isseti 2771 |
. . . . . . . 8
⊢
∃𝑧 𝑧 = 𝐵 |
| 5 | 4 | biantrur 303 |
. . . . . . 7
⊢ (𝜓 ↔ (∃𝑧 𝑧 = 𝐵 ∧ 𝜓)) |
| 6 | 5 | exbii 1619 |
. . . . . 6
⊢
(∃𝑦𝜓 ↔ ∃𝑦(∃𝑧 𝑧 = 𝐵 ∧ 𝜓)) |
| 7 | | 19.41v 1917 |
. . . . . . 7
⊢
(∃𝑧(𝑧 = 𝐵 ∧ 𝜓) ↔ (∃𝑧 𝑧 = 𝐵 ∧ 𝜓)) |
| 8 | 7 | exbii 1619 |
. . . . . 6
⊢
(∃𝑦∃𝑧(𝑧 = 𝐵 ∧ 𝜓) ↔ ∃𝑦(∃𝑧 𝑧 = 𝐵 ∧ 𝜓)) |
| 9 | | excom 1678 |
. . . . . 6
⊢
(∃𝑦∃𝑧(𝑧 = 𝐵 ∧ 𝜓) ↔ ∃𝑧∃𝑦(𝑧 = 𝐵 ∧ 𝜓)) |
| 10 | 6, 8, 9 | 3bitr2i 208 |
. . . . 5
⊢
(∃𝑦𝜓 ↔ ∃𝑧∃𝑦(𝑧 = 𝐵 ∧ 𝜓)) |
| 11 | 2, 10 | bitri 184 |
. . . 4
⊢
(∃𝑥𝜑 ↔ ∃𝑧∃𝑦(𝑧 = 𝐵 ∧ 𝜓)) |
| 12 | | eqeq2 2206 |
. . . . . . . . 9
⊢ (𝐴 = 𝐵 → (𝑧 = 𝐴 ↔ 𝑧 = 𝐵)) |
| 13 | 12 | imim2i 12 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) → ((𝜑 ∧ 𝜓) → (𝑧 = 𝐴 ↔ 𝑧 = 𝐵))) |
| 14 | | biimpr 130 |
. . . . . . . . . 10
⊢ ((𝑧 = 𝐴 ↔ 𝑧 = 𝐵) → (𝑧 = 𝐵 → 𝑧 = 𝐴)) |
| 15 | 14 | imim2i 12 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝜓) → (𝑧 = 𝐴 ↔ 𝑧 = 𝐵)) → ((𝜑 ∧ 𝜓) → (𝑧 = 𝐵 → 𝑧 = 𝐴))) |
| 16 | | an31 564 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑧 = 𝐵) ↔ ((𝑧 = 𝐵 ∧ 𝜓) ∧ 𝜑)) |
| 17 | 16 | imbi1i 238 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑧 = 𝐵) → 𝑧 = 𝐴) ↔ (((𝑧 = 𝐵 ∧ 𝜓) ∧ 𝜑) → 𝑧 = 𝐴)) |
| 18 | | impexp 263 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑧 = 𝐵) → 𝑧 = 𝐴) ↔ ((𝜑 ∧ 𝜓) → (𝑧 = 𝐵 → 𝑧 = 𝐴))) |
| 19 | | impexp 263 |
. . . . . . . . . 10
⊢ ((((𝑧 = 𝐵 ∧ 𝜓) ∧ 𝜑) → 𝑧 = 𝐴) ↔ ((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) |
| 20 | 17, 18, 19 | 3bitr3i 210 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝜓) → (𝑧 = 𝐵 → 𝑧 = 𝐴)) ↔ ((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) |
| 21 | 15, 20 | sylib 122 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) → (𝑧 = 𝐴 ↔ 𝑧 = 𝐵)) → ((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) |
| 22 | 13, 21 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) → ((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) |
| 23 | 22 | 2alimi 1470 |
. . . . . 6
⊢
(∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) → ∀𝑥∀𝑦((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) |
| 24 | | 19.23v 1897 |
. . . . . . . 8
⊢
(∀𝑦((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴)) ↔ (∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) |
| 25 | 24 | albii 1484 |
. . . . . . 7
⊢
(∀𝑥∀𝑦((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴)) ↔ ∀𝑥(∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) |
| 26 | | 19.21v 1887 |
. . . . . . 7
⊢
(∀𝑥(∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴)) ↔ (∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → ∀𝑥(𝜑 → 𝑧 = 𝐴))) |
| 27 | 25, 26 | bitri 184 |
. . . . . 6
⊢
(∀𝑥∀𝑦((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴)) ↔ (∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → ∀𝑥(𝜑 → 𝑧 = 𝐴))) |
| 28 | 23, 27 | sylib 122 |
. . . . 5
⊢
(∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) → (∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → ∀𝑥(𝜑 → 𝑧 = 𝐴))) |
| 29 | 28 | eximdv 1894 |
. . . 4
⊢
(∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) → (∃𝑧∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → ∃𝑧∀𝑥(𝜑 → 𝑧 = 𝐴))) |
| 30 | 11, 29 | biimtrid 152 |
. . 3
⊢
(∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) → (∃𝑥𝜑 → ∃𝑧∀𝑥(𝜑 → 𝑧 = 𝐴))) |
| 31 | 30 | imp 124 |
. 2
⊢
((∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) ∧ ∃𝑥𝜑) → ∃𝑧∀𝑥(𝜑 → 𝑧 = 𝐴)) |
| 32 | | pm4.24 395 |
. . . . . . . 8
⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
| 33 | 32 | biimpi 120 |
. . . . . . 7
⊢ (𝜑 → (𝜑 ∧ 𝜑)) |
| 34 | | anim12 344 |
. . . . . . 7
⊢ (((𝜑 → 𝑧 = 𝐴) ∧ (𝜑 → 𝑤 = 𝐴)) → ((𝜑 ∧ 𝜑) → (𝑧 = 𝐴 ∧ 𝑤 = 𝐴))) |
| 35 | | eqtr3 2216 |
. . . . . . 7
⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐴) → 𝑧 = 𝑤) |
| 36 | 33, 34, 35 | syl56 34 |
. . . . . 6
⊢ (((𝜑 → 𝑧 = 𝐴) ∧ (𝜑 → 𝑤 = 𝐴)) → (𝜑 → 𝑧 = 𝑤)) |
| 37 | 36 | alanimi 1473 |
. . . . 5
⊢
((∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑥(𝜑 → 𝑤 = 𝐴)) → ∀𝑥(𝜑 → 𝑧 = 𝑤)) |
| 38 | | 19.23v 1897 |
. . . . . . 7
⊢
(∀𝑥(𝜑 → 𝑧 = 𝑤) ↔ (∃𝑥𝜑 → 𝑧 = 𝑤)) |
| 39 | 38 | biimpi 120 |
. . . . . 6
⊢
(∀𝑥(𝜑 → 𝑧 = 𝑤) → (∃𝑥𝜑 → 𝑧 = 𝑤)) |
| 40 | 39 | com12 30 |
. . . . 5
⊢
(∃𝑥𝜑 → (∀𝑥(𝜑 → 𝑧 = 𝑤) → 𝑧 = 𝑤)) |
| 41 | 37, 40 | syl5 32 |
. . . 4
⊢
(∃𝑥𝜑 → ((∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑥(𝜑 → 𝑤 = 𝐴)) → 𝑧 = 𝑤)) |
| 42 | 41 | alrimivv 1889 |
. . 3
⊢
(∃𝑥𝜑 → ∀𝑧∀𝑤((∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑥(𝜑 → 𝑤 = 𝐴)) → 𝑧 = 𝑤)) |
| 43 | 42 | adantl 277 |
. 2
⊢
((∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) ∧ ∃𝑥𝜑) → ∀𝑧∀𝑤((∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑥(𝜑 → 𝑤 = 𝐴)) → 𝑧 = 𝑤)) |
| 44 | | eqeq1 2203 |
. . . . 5
⊢ (𝑧 = 𝑤 → (𝑧 = 𝐴 ↔ 𝑤 = 𝐴)) |
| 45 | 44 | imbi2d 230 |
. . . 4
⊢ (𝑧 = 𝑤 → ((𝜑 → 𝑧 = 𝐴) ↔ (𝜑 → 𝑤 = 𝐴))) |
| 46 | 45 | albidv 1838 |
. . 3
⊢ (𝑧 = 𝑤 → (∀𝑥(𝜑 → 𝑧 = 𝐴) ↔ ∀𝑥(𝜑 → 𝑤 = 𝐴))) |
| 47 | 46 | eu4 2107 |
. 2
⊢
(∃!𝑧∀𝑥(𝜑 → 𝑧 = 𝐴) ↔ (∃𝑧∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑧∀𝑤((∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑥(𝜑 → 𝑤 = 𝐴)) → 𝑧 = 𝑤))) |
| 48 | 31, 43, 47 | sylanbrc 417 |
1
⊢
((∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) ∧ ∃𝑥𝜑) → ∃!𝑧∀𝑥(𝜑 → 𝑧 = 𝐴)) |