ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pc2dvds GIF version

Theorem pc2dvds 12524
Description: A characterization of divisibility in terms of prime count. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pc2dvds ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝

Proof of Theorem pc2dvds
StepHypRef Expression
1 pcdvdstr 12521 . . . . 5 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
21ancoms 268 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
32ralrimiva 2570 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
433expia 1207 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
5 2prm 12320 . . . . . . . 8 2 ∈ ℙ
6 elex2 2779 . . . . . . . 8 (2 ∈ ℙ → ∃𝑤 𝑤 ∈ ℙ)
75, 6ax-mp 5 . . . . . . 7 𝑤 𝑤 ∈ ℙ
8 r19.2m 3538 . . . . . . 7 ((∃𝑤 𝑤 ∈ ℙ ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵)) → ∃𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵))
97, 8mpan 424 . . . . . 6 (∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → ∃𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵))
10 id 19 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
11 zq 9717 . . . . . . . . . . . . . 14 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
1211adantl 277 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℚ)
13 pcxcl 12505 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑝 pCnt 𝐵) ∈ ℝ*)
1410, 12, 13syl2anr 290 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℝ*)
15 pnfge 9881 . . . . . . . . . . . 12 ((𝑝 pCnt 𝐵) ∈ ℝ* → (𝑝 pCnt 𝐵) ≤ +∞)
1614, 15syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ≤ +∞)
1716biantrurd 305 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (+∞ ≤ (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐵) ≤ +∞ ∧ +∞ ≤ (𝑝 pCnt 𝐵))))
18 pc0 12498 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → (𝑝 pCnt 0) = +∞)
1918adantl 277 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 0) = +∞)
2019breq1d 4044 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) ↔ +∞ ≤ (𝑝 pCnt 𝐵)))
21 pnfxr 8096 . . . . . . . . . . 11 +∞ ∈ ℝ*
22 xrletri3 9896 . . . . . . . . . . 11 (((𝑝 pCnt 𝐵) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑝 pCnt 𝐵) = +∞ ↔ ((𝑝 pCnt 𝐵) ≤ +∞ ∧ +∞ ≤ (𝑝 pCnt 𝐵))))
2314, 21, 22sylancl 413 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) = +∞ ↔ ((𝑝 pCnt 𝐵) ≤ +∞ ∧ +∞ ≤ (𝑝 pCnt 𝐵))))
2417, 20, 233bitr4d 220 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) ↔ (𝑝 pCnt 𝐵) = +∞))
25 pnfnre 8085 . . . . . . . . . . . 12 +∞ ∉ ℝ
2625neli 2464 . . . . . . . . . . 11 ¬ +∞ ∈ ℝ
27 eleq1 2259 . . . . . . . . . . 11 ((𝑝 pCnt 𝐵) = +∞ → ((𝑝 pCnt 𝐵) ∈ ℝ ↔ +∞ ∈ ℝ))
2826, 27mtbiri 676 . . . . . . . . . 10 ((𝑝 pCnt 𝐵) = +∞ → ¬ (𝑝 pCnt 𝐵) ∈ ℝ)
29 simplr 528 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
30 0zd 9355 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → 0 ∈ ℤ)
31 zdceq 9418 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐵 = 0)
3229, 30, 31syl2anc 411 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → DECID 𝐵 = 0)
33 pczcl 12492 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈ ℕ0)
3433nn0red 9320 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈ ℝ)
3534adantll 476 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ℙ) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈ ℝ)
3635an4s 588 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑝 ∈ ℙ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈ ℝ)
3736expr 375 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝐵 ≠ 0 → (𝑝 pCnt 𝐵) ∈ ℝ))
3837a1d 22 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (DECID 𝐵 = 0 → (𝐵 ≠ 0 → (𝑝 pCnt 𝐵) ∈ ℝ)))
3938necon1bddc 2444 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (DECID 𝐵 = 0 → (¬ (𝑝 pCnt 𝐵) ∈ ℝ → 𝐵 = 0)))
4032, 39mpd 13 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (¬ (𝑝 pCnt 𝐵) ∈ ℝ → 𝐵 = 0))
4128, 40syl5 32 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) = +∞ → 𝐵 = 0))
4224, 41sylbid 150 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 𝐵 = 0))
4342rexlimdva 2614 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∃𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 𝐵 = 0))
44 0dvds 11993 . . . . . . . 8 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
4544adantl 277 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 ∥ 𝐵𝐵 = 0))
4643, 45sylibrd 169 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∃𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵))
479, 46syl5 32 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵))
4847adantr 276 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 = 0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵))
49 oveq2 5933 . . . . . . . 8 (𝐴 = 0 → (𝑝 pCnt 𝐴) = (𝑝 pCnt 0))
5049breq1d 4044 . . . . . . 7 (𝐴 = 0 → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵)))
5150ralbidv 2497 . . . . . 6 (𝐴 = 0 → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵)))
52 breq1 4037 . . . . . 6 (𝐴 = 0 → (𝐴𝐵 ↔ 0 ∥ 𝐵))
5351, 52imbi12d 234 . . . . 5 (𝐴 = 0 → ((∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵)))
5453adantl 277 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 = 0) → ((∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵)))
5548, 54mpbird 167 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 = 0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵))
56 zdvdsdc 11994 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴𝐵)
5756adantr 276 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → DECID 𝐴𝐵)
58 gcddvds 12155 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
5958simpld 112 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐴)
60 gcdcl 12158 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
6160nn0zd 9463 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
62 simpl 109 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
63 dvdsabsb 11992 . . . . . . . . . . . 12 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 gcd 𝐵) ∥ (abs‘𝐴)))
6461, 62, 63syl2anc 411 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 gcd 𝐵) ∥ (abs‘𝐴)))
6559, 64mpbid 147 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ (abs‘𝐴))
6665adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∥ (abs‘𝐴))
67 simpl 109 . . . . . . . . . . . . 13 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐴 = 0)
6867necon3ai 2416 . . . . . . . . . . . 12 (𝐴 ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
69 gcdn0cl 12154 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
7068, 69sylan2 286 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ)
7170nnzd 9464 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℤ)
7270nnne0d 9052 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ≠ 0)
73 nnabscl 11282 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℕ)
7473adantlr 477 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℕ)
7574nnzd 9464 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℤ)
76 dvdsval2 11972 . . . . . . . . . 10 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ (abs‘𝐴) ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ (abs‘𝐴) ↔ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ))
7771, 72, 75, 76syl3anc 1249 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((𝐴 gcd 𝐵) ∥ (abs‘𝐴) ↔ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ))
7866, 77mpbid 147 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ)
79 nnre 9014 . . . . . . . . . . 11 ((abs‘𝐴) ∈ ℕ → (abs‘𝐴) ∈ ℝ)
80 nngt0 9032 . . . . . . . . . . 11 ((abs‘𝐴) ∈ ℕ → 0 < (abs‘𝐴))
8179, 80jca 306 . . . . . . . . . 10 ((abs‘𝐴) ∈ ℕ → ((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴)))
82 nnre 9014 . . . . . . . . . . 11 ((𝐴 gcd 𝐵) ∈ ℕ → (𝐴 gcd 𝐵) ∈ ℝ)
83 nngt0 9032 . . . . . . . . . . 11 ((𝐴 gcd 𝐵) ∈ ℕ → 0 < (𝐴 gcd 𝐵))
8482, 83jca 306 . . . . . . . . . 10 ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ∈ ℝ ∧ 0 < (𝐴 gcd 𝐵)))
85 divgt0 8916 . . . . . . . . . 10 ((((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴)) ∧ ((𝐴 gcd 𝐵) ∈ ℝ ∧ 0 < (𝐴 gcd 𝐵))) → 0 < ((abs‘𝐴) / (𝐴 gcd 𝐵)))
8681, 84, 85syl2an 289 . . . . . . . . 9 (((abs‘𝐴) ∈ ℕ ∧ (𝐴 gcd 𝐵) ∈ ℕ) → 0 < ((abs‘𝐴) / (𝐴 gcd 𝐵)))
8774, 70, 86syl2anc 411 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → 0 < ((abs‘𝐴) / (𝐴 gcd 𝐵)))
88 elnnz 9353 . . . . . . . 8 (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ ↔ (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ ∧ 0 < ((abs‘𝐴) / (𝐴 gcd 𝐵))))
8978, 87, 88sylanbrc 417 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ)
90 elnn1uz2 9698 . . . . . . 7 (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ ↔ (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ∨ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2)))
9189, 90sylib 122 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ∨ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2)))
9258simprd 114 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐵)
9392adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∥ 𝐵)
94 breq1 4037 . . . . . . . . 9 ((𝐴 gcd 𝐵) = (abs‘𝐴) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (abs‘𝐴) ∥ 𝐵))
9593, 94syl5ibcom 155 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((𝐴 gcd 𝐵) = (abs‘𝐴) → (abs‘𝐴) ∥ 𝐵))
9674nncnd 9021 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
9770nncnd 9021 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℂ)
98 1cnd 8059 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → 1 ∈ ℂ)
9970nnap0d 9053 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) # 0)
10096, 97, 98, 99divmulapd 8856 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ↔ ((𝐴 gcd 𝐵) · 1) = (abs‘𝐴)))
10197mulridd 8060 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((𝐴 gcd 𝐵) · 1) = (𝐴 gcd 𝐵))
102101eqeq1d 2205 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((𝐴 gcd 𝐵) · 1) = (abs‘𝐴) ↔ (𝐴 gcd 𝐵) = (abs‘𝐴)))
103100, 102bitrd 188 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ↔ (𝐴 gcd 𝐵) = (abs‘𝐴)))
104 absdvdsb 11991 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ (abs‘𝐴) ∥ 𝐵))
105104adantr 276 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴𝐵 ↔ (abs‘𝐴) ∥ 𝐵))
10695, 103, 1053imtr4d 203 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 → 𝐴𝐵))
107 exprmfct 12331 . . . . . . . 8 (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))
108 simprl 529 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝑝 ∈ ℙ)
10974adantr 276 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ∈ ℕ)
110109nnzd 9464 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ∈ ℤ)
111109nnne0d 9052 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ≠ 0)
11270adantr 276 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝐴 gcd 𝐵) ∈ ℕ)
113 pcdiv 12496 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ ((abs‘𝐴) ∈ ℤ ∧ (abs‘𝐴) ≠ 0) ∧ (𝐴 gcd 𝐵) ∈ ℕ) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) = ((𝑝 pCnt (abs‘𝐴)) − (𝑝 pCnt (𝐴 gcd 𝐵))))
114108, 110, 111, 112, 113syl121anc 1254 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) = ((𝑝 pCnt (abs‘𝐴)) − (𝑝 pCnt (𝐴 gcd 𝐵))))
115 simplll 533 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐴 ∈ ℤ)
116 zq 9717 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
117115, 116syl 14 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐴 ∈ ℚ)
118 pcabs 12520 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑝 pCnt (abs‘𝐴)) = (𝑝 pCnt 𝐴))
119108, 117, 118syl2anc 411 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (abs‘𝐴)) = (𝑝 pCnt 𝐴))
120119oveq1d 5940 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt (abs‘𝐴)) − (𝑝 pCnt (𝐴 gcd 𝐵))) = ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))))
121114, 120eqtrd 2229 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) = ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))))
122 simprr 531 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))
12389adantr 276 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ)
124 pcelnn 12515 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ) → ((𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) ∈ ℕ ↔ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵))))
125108, 123, 124syl2anc 411 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) ∈ ℕ ↔ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵))))
126122, 125mpbird 167 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) ∈ ℕ)
127121, 126eqeltrrd 2274 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))) ∈ ℕ)
128108, 112pccld 12494 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) ∈ ℕ0)
129128nn0zd 9463 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) ∈ ℤ)
130 simplr 528 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐴 ≠ 0)
131 pczcl 12492 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑝 pCnt 𝐴) ∈ ℕ0)
132108, 115, 130, 131syl12anc 1247 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ∈ ℕ0)
133132nn0zd 9463 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ∈ ℤ)
134 znnsub 9394 . . . . . . . . . . . . . 14 (((𝑝 pCnt (𝐴 gcd 𝐵)) ∈ ℤ ∧ (𝑝 pCnt 𝐴) ∈ ℤ) → ((𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴) ↔ ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))) ∈ ℕ))
135129, 133, 134syl2anc 411 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴) ↔ ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))) ∈ ℕ))
136127, 135mpbird 167 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴))
137 zltnle 9389 . . . . . . . . . . . . 13 (((𝑝 pCnt (𝐴 gcd 𝐵)) ∈ ℤ ∧ (𝑝 pCnt 𝐴) ∈ ℤ) → ((𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴) ↔ ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵))))
138129, 133, 137syl2anc 411 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴) ↔ ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵))))
139136, 138mpbid 147 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵)))
140132nn0red 9320 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ∈ ℝ)
141 simpllr 534 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐵 ∈ ℤ)
142 nprmdvds1 12333 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
143142ad2antrl 490 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ 𝑝 ∥ 1)
144 gcdid0 12172 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℤ → (𝐴 gcd 0) = (abs‘𝐴))
145115, 144syl 14 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝐴 gcd 0) = (abs‘𝐴))
146145oveq2d 5941 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (𝐴 gcd 0)) = ((abs‘𝐴) / (abs‘𝐴)))
14796adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ∈ ℂ)
148109nnap0d 9053 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) # 0)
149147, 148dividapd 8830 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (abs‘𝐴)) = 1)
150146, 149eqtrd 2229 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (𝐴 gcd 0)) = 1)
151150breq2d 4046 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0)) ↔ 𝑝 ∥ 1))
152143, 151mtbird 674 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0)))
153 oveq2 5933 . . . . . . . . . . . . . . . . . . . 20 (𝐵 = 0 → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
154153oveq2d 5941 . . . . . . . . . . . . . . . . . . 19 (𝐵 = 0 → ((abs‘𝐴) / (𝐴 gcd 𝐵)) = ((abs‘𝐴) / (𝐴 gcd 0)))
155154breq2d 4046 . . . . . . . . . . . . . . . . . 18 (𝐵 = 0 → (𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ↔ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0))))
156122, 155syl5ibcom 155 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝐵 = 0 → 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0))))
157156necon3bd 2410 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (¬ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0)) → 𝐵 ≠ 0))
158152, 157mpd 13 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐵 ≠ 0)
159108, 141, 158, 33syl12anc 1247 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐵) ∈ ℕ0)
160159nn0red 9320 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐵) ∈ ℝ)
161 lemininf 11416 . . . . . . . . . . . . 13 (((𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) → ((𝑝 pCnt 𝐴) ≤ inf({(𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)}, ℝ, < ) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴) ∧ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))))
162140, 140, 160, 161syl3anc 1249 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ inf({(𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)}, ℝ, < ) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴) ∧ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))))
163 pcgcd 12523 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
164108, 115, 141, 163syl3anc 1249 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
165159nn0zd 9463 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐵) ∈ ℤ)
166 2zinfmin 11425 . . . . . . . . . . . . . . 15 (((𝑝 pCnt 𝐴) ∈ ℤ ∧ (𝑝 pCnt 𝐵) ∈ ℤ) → inf({(𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)}, ℝ, < ) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
167133, 165, 166syl2anc 411 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → inf({(𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)}, ℝ, < ) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
168164, 167eqtr4d 2232 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) = inf({(𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)}, ℝ, < ))
169168breq2d 4046 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵)) ↔ (𝑝 pCnt 𝐴) ≤ inf({(𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)}, ℝ, < )))
170140leidd 8558 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴))
171170biantrurd 305 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴) ∧ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))))
172162, 169, 1713bitr4rd 221 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵))))
173139, 172mtbird 674 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
174173expr 375 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)) → ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
175174reximdva 2599 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (∃𝑝 ∈ ℙ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)) → ∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
176 rexnalim 2486 . . . . . . . 8 (∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
177107, 175, 176syl56 34 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2) → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
178106, 177orim12d 787 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ∨ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2)) → (𝐴𝐵 ∨ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))))
17991, 178mpd 13 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴𝐵 ∨ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
180179ord 725 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (¬ 𝐴𝐵 → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
181 condc 854 . . . 4 (DECID 𝐴𝐵 → ((¬ 𝐴𝐵 → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵)))
18257, 180, 181sylc 62 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵))
183 0zd 9355 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 ∈ ℤ)
184 zdceq 9418 . . . . 5 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐴 = 0)
18562, 183, 184syl2anc 411 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 0)
186 dcne 2378 . . . 4 (DECID 𝐴 = 0 ↔ (𝐴 = 0 ∨ 𝐴 ≠ 0))
187185, 186sylib 122 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 = 0 ∨ 𝐴 ≠ 0))
18855, 182, 187mpjaodan 799 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵))
1894, 188impbid 129 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wex 1506  wcel 2167  wne 2367  wral 2475  wrex 2476  ifcif 3562  {cpr 3624   class class class wbr 4034  cfv 5259  (class class class)co 5925  infcinf 7058  cc 7894  cr 7895  0cc0 7896  1c1 7897   · cmul 7901  +∞cpnf 8075  *cxr 8077   < clt 8078  cle 8079  cmin 8214   / cdiv 8716  cn 9007  2c2 9058  0cn0 9266  cz 9343  cuz 9618  cq 9710  abscabs 11179  cdvds 11969   gcd cgcd 12145  cprime 12300   pCnt cpc 12478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-xnn0 9330  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-gcd 12146  df-prm 12301  df-pc 12479
This theorem is referenced by:  pc11  12525  pcz  12526  pcprmpw2  12527  pockthg  12551
  Copyright terms: Public domain W3C validator