ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pc2dvds GIF version

Theorem pc2dvds 12861
Description: A characterization of divisibility in terms of prime count. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pc2dvds ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝

Proof of Theorem pc2dvds
StepHypRef Expression
1 pcdvdstr 12858 . . . . 5 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
21ancoms 268 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
32ralrimiva 2603 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
433expia 1229 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
5 2prm 12657 . . . . . . . 8 2 ∈ ℙ
6 elex2 2816 . . . . . . . 8 (2 ∈ ℙ → ∃𝑤 𝑤 ∈ ℙ)
75, 6ax-mp 5 . . . . . . 7 𝑤 𝑤 ∈ ℙ
8 r19.2m 3578 . . . . . . 7 ((∃𝑤 𝑤 ∈ ℙ ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵)) → ∃𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵))
97, 8mpan 424 . . . . . 6 (∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → ∃𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵))
10 id 19 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
11 zq 9829 . . . . . . . . . . . . . 14 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
1211adantl 277 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℚ)
13 pcxcl 12842 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑝 pCnt 𝐵) ∈ ℝ*)
1410, 12, 13syl2anr 290 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℝ*)
15 pnfge 9993 . . . . . . . . . . . 12 ((𝑝 pCnt 𝐵) ∈ ℝ* → (𝑝 pCnt 𝐵) ≤ +∞)
1614, 15syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ≤ +∞)
1716biantrurd 305 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (+∞ ≤ (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐵) ≤ +∞ ∧ +∞ ≤ (𝑝 pCnt 𝐵))))
18 pc0 12835 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → (𝑝 pCnt 0) = +∞)
1918adantl 277 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 0) = +∞)
2019breq1d 4093 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) ↔ +∞ ≤ (𝑝 pCnt 𝐵)))
21 pnfxr 8207 . . . . . . . . . . 11 +∞ ∈ ℝ*
22 xrletri3 10008 . . . . . . . . . . 11 (((𝑝 pCnt 𝐵) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑝 pCnt 𝐵) = +∞ ↔ ((𝑝 pCnt 𝐵) ≤ +∞ ∧ +∞ ≤ (𝑝 pCnt 𝐵))))
2314, 21, 22sylancl 413 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) = +∞ ↔ ((𝑝 pCnt 𝐵) ≤ +∞ ∧ +∞ ≤ (𝑝 pCnt 𝐵))))
2417, 20, 233bitr4d 220 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) ↔ (𝑝 pCnt 𝐵) = +∞))
25 pnfnre 8196 . . . . . . . . . . . 12 +∞ ∉ ℝ
2625neli 2497 . . . . . . . . . . 11 ¬ +∞ ∈ ℝ
27 eleq1 2292 . . . . . . . . . . 11 ((𝑝 pCnt 𝐵) = +∞ → ((𝑝 pCnt 𝐵) ∈ ℝ ↔ +∞ ∈ ℝ))
2826, 27mtbiri 679 . . . . . . . . . 10 ((𝑝 pCnt 𝐵) = +∞ → ¬ (𝑝 pCnt 𝐵) ∈ ℝ)
29 simplr 528 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
30 0zd 9466 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → 0 ∈ ℤ)
31 zdceq 9530 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐵 = 0)
3229, 30, 31syl2anc 411 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → DECID 𝐵 = 0)
33 pczcl 12829 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈ ℕ0)
3433nn0red 9431 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈ ℝ)
3534adantll 476 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ℙ) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈ ℝ)
3635an4s 590 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑝 ∈ ℙ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈ ℝ)
3736expr 375 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝐵 ≠ 0 → (𝑝 pCnt 𝐵) ∈ ℝ))
3837a1d 22 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (DECID 𝐵 = 0 → (𝐵 ≠ 0 → (𝑝 pCnt 𝐵) ∈ ℝ)))
3938necon1bddc 2477 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (DECID 𝐵 = 0 → (¬ (𝑝 pCnt 𝐵) ∈ ℝ → 𝐵 = 0)))
4032, 39mpd 13 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (¬ (𝑝 pCnt 𝐵) ∈ ℝ → 𝐵 = 0))
4128, 40syl5 32 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) = +∞ → 𝐵 = 0))
4224, 41sylbid 150 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 𝐵 = 0))
4342rexlimdva 2648 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∃𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 𝐵 = 0))
44 0dvds 12330 . . . . . . . 8 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
4544adantl 277 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 ∥ 𝐵𝐵 = 0))
4643, 45sylibrd 169 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∃𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵))
479, 46syl5 32 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵))
4847adantr 276 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 = 0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵))
49 oveq2 6015 . . . . . . . 8 (𝐴 = 0 → (𝑝 pCnt 𝐴) = (𝑝 pCnt 0))
5049breq1d 4093 . . . . . . 7 (𝐴 = 0 → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵)))
5150ralbidv 2530 . . . . . 6 (𝐴 = 0 → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵)))
52 breq1 4086 . . . . . 6 (𝐴 = 0 → (𝐴𝐵 ↔ 0 ∥ 𝐵))
5351, 52imbi12d 234 . . . . 5 (𝐴 = 0 → ((∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵)))
5453adantl 277 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 = 0) → ((∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵)))
5548, 54mpbird 167 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 = 0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵))
56 zdvdsdc 12331 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴𝐵)
5756adantr 276 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → DECID 𝐴𝐵)
58 gcddvds 12492 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
5958simpld 112 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐴)
60 gcdcl 12495 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
6160nn0zd 9575 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
62 simpl 109 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
63 dvdsabsb 12329 . . . . . . . . . . . 12 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 gcd 𝐵) ∥ (abs‘𝐴)))
6461, 62, 63syl2anc 411 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 gcd 𝐵) ∥ (abs‘𝐴)))
6559, 64mpbid 147 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ (abs‘𝐴))
6665adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∥ (abs‘𝐴))
67 simpl 109 . . . . . . . . . . . . 13 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐴 = 0)
6867necon3ai 2449 . . . . . . . . . . . 12 (𝐴 ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
69 gcdn0cl 12491 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
7068, 69sylan2 286 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ)
7170nnzd 9576 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℤ)
7270nnne0d 9163 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ≠ 0)
73 nnabscl 11619 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℕ)
7473adantlr 477 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℕ)
7574nnzd 9576 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℤ)
76 dvdsval2 12309 . . . . . . . . . 10 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ (abs‘𝐴) ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ (abs‘𝐴) ↔ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ))
7771, 72, 75, 76syl3anc 1271 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((𝐴 gcd 𝐵) ∥ (abs‘𝐴) ↔ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ))
7866, 77mpbid 147 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ)
79 nnre 9125 . . . . . . . . . . 11 ((abs‘𝐴) ∈ ℕ → (abs‘𝐴) ∈ ℝ)
80 nngt0 9143 . . . . . . . . . . 11 ((abs‘𝐴) ∈ ℕ → 0 < (abs‘𝐴))
8179, 80jca 306 . . . . . . . . . 10 ((abs‘𝐴) ∈ ℕ → ((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴)))
82 nnre 9125 . . . . . . . . . . 11 ((𝐴 gcd 𝐵) ∈ ℕ → (𝐴 gcd 𝐵) ∈ ℝ)
83 nngt0 9143 . . . . . . . . . . 11 ((𝐴 gcd 𝐵) ∈ ℕ → 0 < (𝐴 gcd 𝐵))
8482, 83jca 306 . . . . . . . . . 10 ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ∈ ℝ ∧ 0 < (𝐴 gcd 𝐵)))
85 divgt0 9027 . . . . . . . . . 10 ((((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴)) ∧ ((𝐴 gcd 𝐵) ∈ ℝ ∧ 0 < (𝐴 gcd 𝐵))) → 0 < ((abs‘𝐴) / (𝐴 gcd 𝐵)))
8681, 84, 85syl2an 289 . . . . . . . . 9 (((abs‘𝐴) ∈ ℕ ∧ (𝐴 gcd 𝐵) ∈ ℕ) → 0 < ((abs‘𝐴) / (𝐴 gcd 𝐵)))
8774, 70, 86syl2anc 411 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → 0 < ((abs‘𝐴) / (𝐴 gcd 𝐵)))
88 elnnz 9464 . . . . . . . 8 (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ ↔ (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ ∧ 0 < ((abs‘𝐴) / (𝐴 gcd 𝐵))))
8978, 87, 88sylanbrc 417 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ)
90 elnn1uz2 9810 . . . . . . 7 (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ ↔ (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ∨ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2)))
9189, 90sylib 122 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ∨ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2)))
9258simprd 114 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐵)
9392adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∥ 𝐵)
94 breq1 4086 . . . . . . . . 9 ((𝐴 gcd 𝐵) = (abs‘𝐴) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (abs‘𝐴) ∥ 𝐵))
9593, 94syl5ibcom 155 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((𝐴 gcd 𝐵) = (abs‘𝐴) → (abs‘𝐴) ∥ 𝐵))
9674nncnd 9132 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
9770nncnd 9132 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℂ)
98 1cnd 8170 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → 1 ∈ ℂ)
9970nnap0d 9164 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) # 0)
10096, 97, 98, 99divmulapd 8967 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ↔ ((𝐴 gcd 𝐵) · 1) = (abs‘𝐴)))
10197mulridd 8171 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((𝐴 gcd 𝐵) · 1) = (𝐴 gcd 𝐵))
102101eqeq1d 2238 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((𝐴 gcd 𝐵) · 1) = (abs‘𝐴) ↔ (𝐴 gcd 𝐵) = (abs‘𝐴)))
103100, 102bitrd 188 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ↔ (𝐴 gcd 𝐵) = (abs‘𝐴)))
104 absdvdsb 12328 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ (abs‘𝐴) ∥ 𝐵))
105104adantr 276 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴𝐵 ↔ (abs‘𝐴) ∥ 𝐵))
10695, 103, 1053imtr4d 203 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 → 𝐴𝐵))
107 exprmfct 12668 . . . . . . . 8 (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))
108 simprl 529 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝑝 ∈ ℙ)
10974adantr 276 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ∈ ℕ)
110109nnzd 9576 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ∈ ℤ)
111109nnne0d 9163 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ≠ 0)
11270adantr 276 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝐴 gcd 𝐵) ∈ ℕ)
113 pcdiv 12833 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ ((abs‘𝐴) ∈ ℤ ∧ (abs‘𝐴) ≠ 0) ∧ (𝐴 gcd 𝐵) ∈ ℕ) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) = ((𝑝 pCnt (abs‘𝐴)) − (𝑝 pCnt (𝐴 gcd 𝐵))))
114108, 110, 111, 112, 113syl121anc 1276 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) = ((𝑝 pCnt (abs‘𝐴)) − (𝑝 pCnt (𝐴 gcd 𝐵))))
115 simplll 533 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐴 ∈ ℤ)
116 zq 9829 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
117115, 116syl 14 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐴 ∈ ℚ)
118 pcabs 12857 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑝 pCnt (abs‘𝐴)) = (𝑝 pCnt 𝐴))
119108, 117, 118syl2anc 411 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (abs‘𝐴)) = (𝑝 pCnt 𝐴))
120119oveq1d 6022 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt (abs‘𝐴)) − (𝑝 pCnt (𝐴 gcd 𝐵))) = ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))))
121114, 120eqtrd 2262 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) = ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))))
122 simprr 531 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))
12389adantr 276 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ)
124 pcelnn 12852 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ) → ((𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) ∈ ℕ ↔ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵))))
125108, 123, 124syl2anc 411 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) ∈ ℕ ↔ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵))))
126122, 125mpbird 167 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) ∈ ℕ)
127121, 126eqeltrrd 2307 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))) ∈ ℕ)
128108, 112pccld 12831 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) ∈ ℕ0)
129128nn0zd 9575 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) ∈ ℤ)
130 simplr 528 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐴 ≠ 0)
131 pczcl 12829 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑝 pCnt 𝐴) ∈ ℕ0)
132108, 115, 130, 131syl12anc 1269 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ∈ ℕ0)
133132nn0zd 9575 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ∈ ℤ)
134 znnsub 9506 . . . . . . . . . . . . . 14 (((𝑝 pCnt (𝐴 gcd 𝐵)) ∈ ℤ ∧ (𝑝 pCnt 𝐴) ∈ ℤ) → ((𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴) ↔ ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))) ∈ ℕ))
135129, 133, 134syl2anc 411 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴) ↔ ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))) ∈ ℕ))
136127, 135mpbird 167 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴))
137 zltnle 9500 . . . . . . . . . . . . 13 (((𝑝 pCnt (𝐴 gcd 𝐵)) ∈ ℤ ∧ (𝑝 pCnt 𝐴) ∈ ℤ) → ((𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴) ↔ ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵))))
138129, 133, 137syl2anc 411 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴) ↔ ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵))))
139136, 138mpbid 147 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵)))
140132nn0red 9431 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ∈ ℝ)
141 simpllr 534 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐵 ∈ ℤ)
142 nprmdvds1 12670 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
143142ad2antrl 490 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ 𝑝 ∥ 1)
144 gcdid0 12509 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℤ → (𝐴 gcd 0) = (abs‘𝐴))
145115, 144syl 14 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝐴 gcd 0) = (abs‘𝐴))
146145oveq2d 6023 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (𝐴 gcd 0)) = ((abs‘𝐴) / (abs‘𝐴)))
14796adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ∈ ℂ)
148109nnap0d 9164 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) # 0)
149147, 148dividapd 8941 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (abs‘𝐴)) = 1)
150146, 149eqtrd 2262 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (𝐴 gcd 0)) = 1)
151150breq2d 4095 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0)) ↔ 𝑝 ∥ 1))
152143, 151mtbird 677 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0)))
153 oveq2 6015 . . . . . . . . . . . . . . . . . . . 20 (𝐵 = 0 → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
154153oveq2d 6023 . . . . . . . . . . . . . . . . . . 19 (𝐵 = 0 → ((abs‘𝐴) / (𝐴 gcd 𝐵)) = ((abs‘𝐴) / (𝐴 gcd 0)))
155154breq2d 4095 . . . . . . . . . . . . . . . . . 18 (𝐵 = 0 → (𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ↔ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0))))
156122, 155syl5ibcom 155 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝐵 = 0 → 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0))))
157156necon3bd 2443 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (¬ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0)) → 𝐵 ≠ 0))
158152, 157mpd 13 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐵 ≠ 0)
159108, 141, 158, 33syl12anc 1269 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐵) ∈ ℕ0)
160159nn0red 9431 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐵) ∈ ℝ)
161 lemininf 11753 . . . . . . . . . . . . 13 (((𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) → ((𝑝 pCnt 𝐴) ≤ inf({(𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)}, ℝ, < ) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴) ∧ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))))
162140, 140, 160, 161syl3anc 1271 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ inf({(𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)}, ℝ, < ) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴) ∧ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))))
163 pcgcd 12860 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
164108, 115, 141, 163syl3anc 1271 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
165159nn0zd 9575 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐵) ∈ ℤ)
166 2zinfmin 11762 . . . . . . . . . . . . . . 15 (((𝑝 pCnt 𝐴) ∈ ℤ ∧ (𝑝 pCnt 𝐵) ∈ ℤ) → inf({(𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)}, ℝ, < ) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
167133, 165, 166syl2anc 411 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → inf({(𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)}, ℝ, < ) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
168164, 167eqtr4d 2265 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) = inf({(𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)}, ℝ, < ))
169168breq2d 4095 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵)) ↔ (𝑝 pCnt 𝐴) ≤ inf({(𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)}, ℝ, < )))
170140leidd 8669 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴))
171170biantrurd 305 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴) ∧ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))))
172162, 169, 1713bitr4rd 221 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵))))
173139, 172mtbird 677 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
174173expr 375 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)) → ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
175174reximdva 2632 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (∃𝑝 ∈ ℙ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)) → ∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
176 rexnalim 2519 . . . . . . . 8 (∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
177107, 175, 176syl56 34 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2) → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
178106, 177orim12d 791 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ∨ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2)) → (𝐴𝐵 ∨ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))))
17991, 178mpd 13 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴𝐵 ∨ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
180179ord 729 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (¬ 𝐴𝐵 → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
181 condc 858 . . . 4 (DECID 𝐴𝐵 → ((¬ 𝐴𝐵 → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵)))
18257, 180, 181sylc 62 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵))
183 0zd 9466 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 ∈ ℤ)
184 zdceq 9530 . . . . 5 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐴 = 0)
18562, 183, 184syl2anc 411 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 0)
186 dcne 2411 . . . 4 (DECID 𝐴 = 0 ↔ (𝐴 = 0 ∨ 𝐴 ≠ 0))
187185, 186sylib 122 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 = 0 ∨ 𝐴 ≠ 0))
18855, 182, 187mpjaodan 803 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵))
1894, 188impbid 129 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wne 2400  wral 2508  wrex 2509  ifcif 3602  {cpr 3667   class class class wbr 4083  cfv 5318  (class class class)co 6007  infcinf 7158  cc 8005  cr 8006  0cc0 8007  1c1 8008   · cmul 8012  +∞cpnf 8186  *cxr 8188   < clt 8189  cle 8190  cmin 8325   / cdiv 8827  cn 9118  2c2 9169  0cn0 9377  cz 9454  cuz 9730  cq 9822  abscabs 11516  cdvds 12306   gcd cgcd 12482  cprime 12637   pCnt cpc 12815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-2o 6569  df-er 6688  df-en 6896  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-xnn0 9441  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-dvds 12307  df-gcd 12483  df-prm 12638  df-pc 12816
This theorem is referenced by:  pc11  12862  pcz  12863  pcprmpw2  12864  pockthg  12888
  Copyright terms: Public domain W3C validator