ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pc2dvds GIF version

Theorem pc2dvds 12697
Description: A characterization of divisibility in terms of prime count. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pc2dvds ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝

Proof of Theorem pc2dvds
StepHypRef Expression
1 pcdvdstr 12694 . . . . 5 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
21ancoms 268 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
32ralrimiva 2580 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
433expia 1208 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
5 2prm 12493 . . . . . . . 8 2 ∈ ℙ
6 elex2 2789 . . . . . . . 8 (2 ∈ ℙ → ∃𝑤 𝑤 ∈ ℙ)
75, 6ax-mp 5 . . . . . . 7 𝑤 𝑤 ∈ ℙ
8 r19.2m 3548 . . . . . . 7 ((∃𝑤 𝑤 ∈ ℙ ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵)) → ∃𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵))
97, 8mpan 424 . . . . . 6 (∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → ∃𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵))
10 id 19 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
11 zq 9754 . . . . . . . . . . . . . 14 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
1211adantl 277 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℚ)
13 pcxcl 12678 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑝 pCnt 𝐵) ∈ ℝ*)
1410, 12, 13syl2anr 290 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℝ*)
15 pnfge 9918 . . . . . . . . . . . 12 ((𝑝 pCnt 𝐵) ∈ ℝ* → (𝑝 pCnt 𝐵) ≤ +∞)
1614, 15syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ≤ +∞)
1716biantrurd 305 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (+∞ ≤ (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐵) ≤ +∞ ∧ +∞ ≤ (𝑝 pCnt 𝐵))))
18 pc0 12671 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → (𝑝 pCnt 0) = +∞)
1918adantl 277 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 0) = +∞)
2019breq1d 4057 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) ↔ +∞ ≤ (𝑝 pCnt 𝐵)))
21 pnfxr 8132 . . . . . . . . . . 11 +∞ ∈ ℝ*
22 xrletri3 9933 . . . . . . . . . . 11 (((𝑝 pCnt 𝐵) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑝 pCnt 𝐵) = +∞ ↔ ((𝑝 pCnt 𝐵) ≤ +∞ ∧ +∞ ≤ (𝑝 pCnt 𝐵))))
2314, 21, 22sylancl 413 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) = +∞ ↔ ((𝑝 pCnt 𝐵) ≤ +∞ ∧ +∞ ≤ (𝑝 pCnt 𝐵))))
2417, 20, 233bitr4d 220 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) ↔ (𝑝 pCnt 𝐵) = +∞))
25 pnfnre 8121 . . . . . . . . . . . 12 +∞ ∉ ℝ
2625neli 2474 . . . . . . . . . . 11 ¬ +∞ ∈ ℝ
27 eleq1 2269 . . . . . . . . . . 11 ((𝑝 pCnt 𝐵) = +∞ → ((𝑝 pCnt 𝐵) ∈ ℝ ↔ +∞ ∈ ℝ))
2826, 27mtbiri 677 . . . . . . . . . 10 ((𝑝 pCnt 𝐵) = +∞ → ¬ (𝑝 pCnt 𝐵) ∈ ℝ)
29 simplr 528 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
30 0zd 9391 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → 0 ∈ ℤ)
31 zdceq 9455 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐵 = 0)
3229, 30, 31syl2anc 411 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → DECID 𝐵 = 0)
33 pczcl 12665 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈ ℕ0)
3433nn0red 9356 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈ ℝ)
3534adantll 476 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑝 ∈ ℙ) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈ ℝ)
3635an4s 588 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑝 ∈ ℙ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt 𝐵) ∈ ℝ)
3736expr 375 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (𝐵 ≠ 0 → (𝑝 pCnt 𝐵) ∈ ℝ))
3837a1d 22 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (DECID 𝐵 = 0 → (𝐵 ≠ 0 → (𝑝 pCnt 𝐵) ∈ ℝ)))
3938necon1bddc 2454 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (DECID 𝐵 = 0 → (¬ (𝑝 pCnt 𝐵) ∈ ℝ → 𝐵 = 0)))
4032, 39mpd 13 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → (¬ (𝑝 pCnt 𝐵) ∈ ℝ → 𝐵 = 0))
4128, 40syl5 32 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) = +∞ → 𝐵 = 0))
4224, 41sylbid 150 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 𝐵 = 0))
4342rexlimdva 2624 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∃𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 𝐵 = 0))
44 0dvds 12166 . . . . . . . 8 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
4544adantl 277 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 ∥ 𝐵𝐵 = 0))
4643, 45sylibrd 169 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∃𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵))
479, 46syl5 32 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵))
4847adantr 276 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 = 0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵))
49 oveq2 5959 . . . . . . . 8 (𝐴 = 0 → (𝑝 pCnt 𝐴) = (𝑝 pCnt 0))
5049breq1d 4057 . . . . . . 7 (𝐴 = 0 → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵)))
5150ralbidv 2507 . . . . . 6 (𝐴 = 0 → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵)))
52 breq1 4050 . . . . . 6 (𝐴 = 0 → (𝐴𝐵 ↔ 0 ∥ 𝐵))
5351, 52imbi12d 234 . . . . 5 (𝐴 = 0 → ((∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵)))
5453adantl 277 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 = 0) → ((∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 0) ≤ (𝑝 pCnt 𝐵) → 0 ∥ 𝐵)))
5548, 54mpbird 167 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 = 0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵))
56 zdvdsdc 12167 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴𝐵)
5756adantr 276 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → DECID 𝐴𝐵)
58 gcddvds 12328 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
5958simpld 112 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐴)
60 gcdcl 12331 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
6160nn0zd 9500 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
62 simpl 109 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
63 dvdsabsb 12165 . . . . . . . . . . . 12 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 gcd 𝐵) ∥ (abs‘𝐴)))
6461, 62, 63syl2anc 411 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 gcd 𝐵) ∥ (abs‘𝐴)))
6559, 64mpbid 147 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ (abs‘𝐴))
6665adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∥ (abs‘𝐴))
67 simpl 109 . . . . . . . . . . . . 13 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐴 = 0)
6867necon3ai 2426 . . . . . . . . . . . 12 (𝐴 ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
69 gcdn0cl 12327 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
7068, 69sylan2 286 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ)
7170nnzd 9501 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℤ)
7270nnne0d 9088 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ≠ 0)
73 nnabscl 11455 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℕ)
7473adantlr 477 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℕ)
7574nnzd 9501 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℤ)
76 dvdsval2 12145 . . . . . . . . . 10 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ (abs‘𝐴) ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ (abs‘𝐴) ↔ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ))
7771, 72, 75, 76syl3anc 1250 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((𝐴 gcd 𝐵) ∥ (abs‘𝐴) ↔ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ))
7866, 77mpbid 147 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ)
79 nnre 9050 . . . . . . . . . . 11 ((abs‘𝐴) ∈ ℕ → (abs‘𝐴) ∈ ℝ)
80 nngt0 9068 . . . . . . . . . . 11 ((abs‘𝐴) ∈ ℕ → 0 < (abs‘𝐴))
8179, 80jca 306 . . . . . . . . . 10 ((abs‘𝐴) ∈ ℕ → ((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴)))
82 nnre 9050 . . . . . . . . . . 11 ((𝐴 gcd 𝐵) ∈ ℕ → (𝐴 gcd 𝐵) ∈ ℝ)
83 nngt0 9068 . . . . . . . . . . 11 ((𝐴 gcd 𝐵) ∈ ℕ → 0 < (𝐴 gcd 𝐵))
8482, 83jca 306 . . . . . . . . . 10 ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ∈ ℝ ∧ 0 < (𝐴 gcd 𝐵)))
85 divgt0 8952 . . . . . . . . . 10 ((((abs‘𝐴) ∈ ℝ ∧ 0 < (abs‘𝐴)) ∧ ((𝐴 gcd 𝐵) ∈ ℝ ∧ 0 < (𝐴 gcd 𝐵))) → 0 < ((abs‘𝐴) / (𝐴 gcd 𝐵)))
8681, 84, 85syl2an 289 . . . . . . . . 9 (((abs‘𝐴) ∈ ℕ ∧ (𝐴 gcd 𝐵) ∈ ℕ) → 0 < ((abs‘𝐴) / (𝐴 gcd 𝐵)))
8774, 70, 86syl2anc 411 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → 0 < ((abs‘𝐴) / (𝐴 gcd 𝐵)))
88 elnnz 9389 . . . . . . . 8 (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ ↔ (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℤ ∧ 0 < ((abs‘𝐴) / (𝐴 gcd 𝐵))))
8978, 87, 88sylanbrc 417 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ)
90 elnn1uz2 9735 . . . . . . 7 (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ ↔ (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ∨ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2)))
9189, 90sylib 122 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ∨ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2)))
9258simprd 114 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐵)
9392adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∥ 𝐵)
94 breq1 4050 . . . . . . . . 9 ((𝐴 gcd 𝐵) = (abs‘𝐴) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (abs‘𝐴) ∥ 𝐵))
9593, 94syl5ibcom 155 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((𝐴 gcd 𝐵) = (abs‘𝐴) → (abs‘𝐴) ∥ 𝐵))
9674nncnd 9057 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
9770nncnd 9057 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℂ)
98 1cnd 8095 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → 1 ∈ ℂ)
9970nnap0d 9089 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 gcd 𝐵) # 0)
10096, 97, 98, 99divmulapd 8892 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ↔ ((𝐴 gcd 𝐵) · 1) = (abs‘𝐴)))
10197mulridd 8096 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((𝐴 gcd 𝐵) · 1) = (𝐴 gcd 𝐵))
102101eqeq1d 2215 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((𝐴 gcd 𝐵) · 1) = (abs‘𝐴) ↔ (𝐴 gcd 𝐵) = (abs‘𝐴)))
103100, 102bitrd 188 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ↔ (𝐴 gcd 𝐵) = (abs‘𝐴)))
104 absdvdsb 12164 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ (abs‘𝐴) ∥ 𝐵))
105104adantr 276 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴𝐵 ↔ (abs‘𝐴) ∥ 𝐵))
10695, 103, 1053imtr4d 203 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 → 𝐴𝐵))
107 exprmfct 12504 . . . . . . . 8 (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))
108 simprl 529 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝑝 ∈ ℙ)
10974adantr 276 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ∈ ℕ)
110109nnzd 9501 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ∈ ℤ)
111109nnne0d 9088 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ≠ 0)
11270adantr 276 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝐴 gcd 𝐵) ∈ ℕ)
113 pcdiv 12669 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ ((abs‘𝐴) ∈ ℤ ∧ (abs‘𝐴) ≠ 0) ∧ (𝐴 gcd 𝐵) ∈ ℕ) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) = ((𝑝 pCnt (abs‘𝐴)) − (𝑝 pCnt (𝐴 gcd 𝐵))))
114108, 110, 111, 112, 113syl121anc 1255 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) = ((𝑝 pCnt (abs‘𝐴)) − (𝑝 pCnt (𝐴 gcd 𝐵))))
115 simplll 533 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐴 ∈ ℤ)
116 zq 9754 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
117115, 116syl 14 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐴 ∈ ℚ)
118 pcabs 12693 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑝 pCnt (abs‘𝐴)) = (𝑝 pCnt 𝐴))
119108, 117, 118syl2anc 411 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (abs‘𝐴)) = (𝑝 pCnt 𝐴))
120119oveq1d 5966 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt (abs‘𝐴)) − (𝑝 pCnt (𝐴 gcd 𝐵))) = ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))))
121114, 120eqtrd 2239 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) = ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))))
122 simprr 531 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))
12389adantr 276 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ)
124 pcelnn 12688 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ ℕ) → ((𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) ∈ ℕ ↔ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵))))
125108, 123, 124syl2anc 411 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) ∈ ℕ ↔ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵))))
126122, 125mpbird 167 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt ((abs‘𝐴) / (𝐴 gcd 𝐵))) ∈ ℕ)
127121, 126eqeltrrd 2284 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))) ∈ ℕ)
128108, 112pccld 12667 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) ∈ ℕ0)
129128nn0zd 9500 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) ∈ ℤ)
130 simplr 528 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐴 ≠ 0)
131 pczcl 12665 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑝 pCnt 𝐴) ∈ ℕ0)
132108, 115, 130, 131syl12anc 1248 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ∈ ℕ0)
133132nn0zd 9500 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ∈ ℤ)
134 znnsub 9431 . . . . . . . . . . . . . 14 (((𝑝 pCnt (𝐴 gcd 𝐵)) ∈ ℤ ∧ (𝑝 pCnt 𝐴) ∈ ℤ) → ((𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴) ↔ ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))) ∈ ℕ))
135129, 133, 134syl2anc 411 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴) ↔ ((𝑝 pCnt 𝐴) − (𝑝 pCnt (𝐴 gcd 𝐵))) ∈ ℕ))
136127, 135mpbird 167 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴))
137 zltnle 9425 . . . . . . . . . . . . 13 (((𝑝 pCnt (𝐴 gcd 𝐵)) ∈ ℤ ∧ (𝑝 pCnt 𝐴) ∈ ℤ) → ((𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴) ↔ ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵))))
138129, 133, 137syl2anc 411 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt (𝐴 gcd 𝐵)) < (𝑝 pCnt 𝐴) ↔ ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵))))
139136, 138mpbid 147 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵)))
140132nn0red 9356 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ∈ ℝ)
141 simpllr 534 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐵 ∈ ℤ)
142 nprmdvds1 12506 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
143142ad2antrl 490 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ 𝑝 ∥ 1)
144 gcdid0 12345 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℤ → (𝐴 gcd 0) = (abs‘𝐴))
145115, 144syl 14 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝐴 gcd 0) = (abs‘𝐴))
146145oveq2d 5967 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (𝐴 gcd 0)) = ((abs‘𝐴) / (abs‘𝐴)))
14796adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) ∈ ℂ)
148109nnap0d 9089 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (abs‘𝐴) # 0)
149147, 148dividapd 8866 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (abs‘𝐴)) = 1)
150146, 149eqtrd 2239 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((abs‘𝐴) / (𝐴 gcd 0)) = 1)
151150breq2d 4059 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0)) ↔ 𝑝 ∥ 1))
152143, 151mtbird 675 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0)))
153 oveq2 5959 . . . . . . . . . . . . . . . . . . . 20 (𝐵 = 0 → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
154153oveq2d 5967 . . . . . . . . . . . . . . . . . . 19 (𝐵 = 0 → ((abs‘𝐴) / (𝐴 gcd 𝐵)) = ((abs‘𝐴) / (𝐴 gcd 0)))
155154breq2d 4059 . . . . . . . . . . . . . . . . . 18 (𝐵 = 0 → (𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ↔ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0))))
156122, 155syl5ibcom 155 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝐵 = 0 → 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0))))
157156necon3bd 2420 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (¬ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 0)) → 𝐵 ≠ 0))
158152, 157mpd 13 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → 𝐵 ≠ 0)
159108, 141, 158, 33syl12anc 1248 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐵) ∈ ℕ0)
160159nn0red 9356 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐵) ∈ ℝ)
161 lemininf 11589 . . . . . . . . . . . . 13 (((𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) → ((𝑝 pCnt 𝐴) ≤ inf({(𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)}, ℝ, < ) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴) ∧ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))))
162140, 140, 160, 161syl3anc 1250 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ inf({(𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)}, ℝ, < ) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴) ∧ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))))
163 pcgcd 12696 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
164108, 115, 141, 163syl3anc 1250 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
165159nn0zd 9500 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐵) ∈ ℤ)
166 2zinfmin 11598 . . . . . . . . . . . . . . 15 (((𝑝 pCnt 𝐴) ∈ ℤ ∧ (𝑝 pCnt 𝐵) ∈ ℤ) → inf({(𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)}, ℝ, < ) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
167133, 165, 166syl2anc 411 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → inf({(𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)}, ℝ, < ) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
168164, 167eqtr4d 2242 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt (𝐴 gcd 𝐵)) = inf({(𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)}, ℝ, < ))
169168breq2d 4059 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵)) ↔ (𝑝 pCnt 𝐴) ≤ inf({(𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)}, ℝ, < )))
170140leidd 8594 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴))
171170biantrurd 305 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐴) ∧ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))))
172162, 169, 1713bitr4rd 221 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ↔ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝐴 gcd 𝐵))))
173139, 172mtbird 675 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)))) → ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
174173expr 375 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)) → ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
175174reximdva 2609 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (∃𝑝 ∈ ℙ 𝑝 ∥ ((abs‘𝐴) / (𝐴 gcd 𝐵)) → ∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
176 rexnalim 2496 . . . . . . . 8 (∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))
177107, 175, 176syl56 34 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2) → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
178106, 177orim12d 788 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → ((((abs‘𝐴) / (𝐴 gcd 𝐵)) = 1 ∨ ((abs‘𝐴) / (𝐴 gcd 𝐵)) ∈ (ℤ‘2)) → (𝐴𝐵 ∨ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵))))
17991, 178mpd 13 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴𝐵 ∨ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
180179ord 726 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (¬ 𝐴𝐵 → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
181 condc 855 . . . 4 (DECID 𝐴𝐵 → ((¬ 𝐴𝐵 → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵)))
18257, 180, 181sylc 62 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≠ 0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵))
183 0zd 9391 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 ∈ ℤ)
184 zdceq 9455 . . . . 5 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐴 = 0)
18562, 183, 184syl2anc 411 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 0)
186 dcne 2388 . . . 4 (DECID 𝐴 = 0 ↔ (𝐴 = 0 ∨ 𝐴 ≠ 0))
187185, 186sylib 122 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 = 0 ∨ 𝐴 ≠ 0))
18855, 182, 187mpjaodan 800 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) → 𝐴𝐵))
1894, 188impbid 129 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wex 1516  wcel 2177  wne 2377  wral 2485  wrex 2486  ifcif 3572  {cpr 3635   class class class wbr 4047  cfv 5276  (class class class)co 5951  infcinf 7092  cc 7930  cr 7931  0cc0 7932  1c1 7933   · cmul 7937  +∞cpnf 8111  *cxr 8113   < clt 8114  cle 8115  cmin 8250   / cdiv 8752  cn 9043  2c2 9094  0cn0 9302  cz 9379  cuz 9655  cq 9747  abscabs 11352  cdvds 12142   gcd cgcd 12318  cprime 12473   pCnt cpc 12651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-1o 6509  df-2o 6510  df-er 6627  df-en 6835  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-xnn0 9366  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-dvds 12143  df-gcd 12319  df-prm 12474  df-pc 12652
This theorem is referenced by:  pc11  12698  pcz  12699  pcprmpw2  12700  pockthg  12724
  Copyright terms: Public domain W3C validator