| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > syld3an1 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) | 
| Ref | Expression | 
|---|---|
| syld3an1.1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) | 
| syld3an1.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | 
| Ref | Expression | 
|---|---|
| syld3an1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syld3an1.1 | . . . 4 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) | |
| 2 | 1 | 3com13 1210 | . . 3 ⊢ ((𝜃 ∧ 𝜓 ∧ 𝜒) → 𝜑) | 
| 3 | syld3an1.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | 3 | 3com13 1210 | . . 3 ⊢ ((𝜃 ∧ 𝜓 ∧ 𝜑) → 𝜏) | 
| 5 | 2, 4 | syld3an3 1294 | . 2 ⊢ ((𝜃 ∧ 𝜓 ∧ 𝜒) → 𝜏) | 
| 6 | 5 | 3com13 1210 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: tfrcllembacc 6413 npncan 8247 nnpcan 8249 ppncan 8268 muldivdirap 8734 div2negap 8762 ltmuldiv 8901 mulqmod0 10422 gcdaddm 12151 zndvds 14205 | 
| Copyright terms: Public domain | W3C validator |