Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syld3an1 | GIF version |
Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) |
Ref | Expression |
---|---|
syld3an1.1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) |
syld3an1.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syld3an1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syld3an1.1 | . . . 4 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) | |
2 | 1 | 3com13 1190 | . . 3 ⊢ ((𝜃 ∧ 𝜓 ∧ 𝜒) → 𝜑) |
3 | syld3an1.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
4 | 3 | 3com13 1190 | . . 3 ⊢ ((𝜃 ∧ 𝜓 ∧ 𝜑) → 𝜏) |
5 | 2, 4 | syld3an3 1265 | . 2 ⊢ ((𝜃 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
6 | 5 | 3com13 1190 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: tfrcllembacc 6296 npncan 8079 nnpcan 8081 ppncan 8100 muldivdirap 8563 div2negap 8591 ltmuldiv 8728 mulqmod0 10211 |
Copyright terms: Public domain | W3C validator |