| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syld3an3 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
| Ref | Expression |
|---|---|
| syld3an3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| syld3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syld3an3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | simp2 1000 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | syld3an3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | syld3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syld3an1 1295 syld3an2 1296 brelrng 4907 moriotass 5918 nnncan1 8290 lediv1 8924 modqval 10450 modqvalr 10451 modqcl 10452 flqpmodeq 10453 modq0 10455 modqge0 10458 modqlt 10459 modqdiffl 10461 modqdifz 10462 modqvalp1 10469 exp3val 10667 bcval4 10878 ccatval3 11030 ccatfv0 11034 ccatval1lsw 11035 ccatval21sw 11036 lswccatn0lsw 11042 dvdsmultr1 12061 dvdssub2 12065 divalglemeuneg 12153 ndvdsadd 12161 grpsubf 13329 grpinvsub 13332 grpnpcan 13342 mulginvcom 13401 mulginvinv 13402 subgsubcl 13439 qussub 13491 ghmsub 13505 dvrcl 13815 unitdvcl 13816 basgen2 14471 opnneiss 14548 cnpf2 14597 sincosq1lem 15215 |
| Copyright terms: Public domain | W3C validator |