| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syld3an3 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
| Ref | Expression |
|---|---|
| syld3an3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| syld3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syld3an3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | simp2 1000 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | syld3an3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | syld3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syld3an1 1295 syld3an2 1296 brelrng 4898 moriotass 5909 nnncan1 8281 lediv1 8915 modqval 10435 modqvalr 10436 modqcl 10437 flqpmodeq 10438 modq0 10440 modqge0 10443 modqlt 10444 modqdiffl 10446 modqdifz 10447 modqvalp1 10454 exp3val 10652 bcval4 10863 dvdsmultr1 12015 dvdssub2 12019 divalglemeuneg 12107 ndvdsadd 12115 grpsubf 13283 grpinvsub 13286 grpnpcan 13296 mulginvcom 13355 mulginvinv 13356 subgsubcl 13393 qussub 13445 ghmsub 13459 dvrcl 13769 unitdvcl 13770 basgen2 14425 opnneiss 14502 cnpf2 14551 sincosq1lem 15169 |
| Copyright terms: Public domain | W3C validator |