| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syld3an3 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
| Ref | Expression |
|---|---|
| syld3an3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| syld3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syld3an3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | simp2 1022 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | syld3an3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | syld3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 1, 2, 3, 4 | syl3anc 1271 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: syld3an1 1317 syld3an2 1318 brelrng 4954 moriotass 5984 nnncan1 8378 lediv1 9012 modqval 10541 modqvalr 10542 modqcl 10543 flqpmodeq 10544 modq0 10546 modqge0 10549 modqlt 10550 modqdiffl 10552 modqdifz 10553 modqvalp1 10560 exp3val 10758 bcval4 10969 ccatval3 11129 ccatfv0 11133 ccatval1lsw 11134 ccatval21sw 11135 lswccatn0lsw 11141 pfxsuff1eqwrdeq 11226 pfxccatid 11268 dvdsmultr1 12337 dvdssub2 12341 divalglemeuneg 12429 ndvdsadd 12437 grpsubf 13607 grpinvsub 13610 grpnpcan 13620 mulginvcom 13679 mulginvinv 13680 subgsubcl 13717 qussub 13769 ghmsub 13783 dvrcl 14093 unitdvcl 14094 basgen2 14749 opnneiss 14826 cnpf2 14875 sincosq1lem 15493 |
| Copyright terms: Public domain | W3C validator |