![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syld3an3 | GIF version |
Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
Ref | Expression |
---|---|
syld3an3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
syld3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syld3an3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 999 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
2 | simp2 1000 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
3 | syld3an3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
4 | syld3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: syld3an1 1295 syld3an2 1296 brelrng 4894 moriotass 5903 nnncan1 8257 lediv1 8890 modqval 10398 modqvalr 10399 modqcl 10400 flqpmodeq 10401 modq0 10403 modqge0 10406 modqlt 10407 modqdiffl 10409 modqdifz 10410 modqvalp1 10417 exp3val 10615 bcval4 10826 dvdsmultr1 11977 dvdssub2 11981 divalglemeuneg 12067 ndvdsadd 12075 grpsubf 13154 grpinvsub 13157 grpnpcan 13167 mulginvcom 13220 mulginvinv 13221 subgsubcl 13258 qussub 13310 ghmsub 13324 dvrcl 13634 unitdvcl 13635 basgen2 14260 opnneiss 14337 cnpf2 14386 sincosq1lem 15001 |
Copyright terms: Public domain | W3C validator |