| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syld3an3 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
| Ref | Expression |
|---|---|
| syld3an3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| syld3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syld3an3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | simp2 1001 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | syld3an3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | syld3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 1, 2, 3, 4 | syl3anc 1250 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syld3an1 1296 syld3an2 1297 brelrng 4918 moriotass 5941 nnncan1 8328 lediv1 8962 modqval 10491 modqvalr 10492 modqcl 10493 flqpmodeq 10494 modq0 10496 modqge0 10499 modqlt 10500 modqdiffl 10502 modqdifz 10503 modqvalp1 10510 exp3val 10708 bcval4 10919 ccatval3 11078 ccatfv0 11082 ccatval1lsw 11083 ccatval21sw 11084 lswccatn0lsw 11090 pfxsuff1eqwrdeq 11175 dvdsmultr1 12217 dvdssub2 12221 divalglemeuneg 12309 ndvdsadd 12317 grpsubf 13486 grpinvsub 13489 grpnpcan 13499 mulginvcom 13558 mulginvinv 13559 subgsubcl 13596 qussub 13648 ghmsub 13662 dvrcl 13972 unitdvcl 13973 basgen2 14628 opnneiss 14705 cnpf2 14754 sincosq1lem 15372 |
| Copyright terms: Public domain | W3C validator |