| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > syld3an3 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) | 
| Ref | Expression | 
|---|---|
| syld3an3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
| syld3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | 
| Ref | Expression | 
|---|---|
| syld3an3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp1 999 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | simp2 1000 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | syld3an3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | syld3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: syld3an1 1295 syld3an2 1296 brelrng 4897 moriotass 5906 nnncan1 8262 lediv1 8896 modqval 10416 modqvalr 10417 modqcl 10418 flqpmodeq 10419 modq0 10421 modqge0 10424 modqlt 10425 modqdiffl 10427 modqdifz 10428 modqvalp1 10435 exp3val 10633 bcval4 10844 dvdsmultr1 11996 dvdssub2 12000 divalglemeuneg 12088 ndvdsadd 12096 grpsubf 13211 grpinvsub 13214 grpnpcan 13224 mulginvcom 13277 mulginvinv 13278 subgsubcl 13315 qussub 13367 ghmsub 13381 dvrcl 13691 unitdvcl 13692 basgen2 14317 opnneiss 14394 cnpf2 14443 sincosq1lem 15061 | 
| Copyright terms: Public domain | W3C validator |