Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syld3an3 | GIF version |
Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
Ref | Expression |
---|---|
syld3an3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
syld3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syld3an3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 997 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
2 | simp2 998 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
3 | syld3an3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
4 | syld3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
5 | 1, 2, 3, 4 | syl3anc 1238 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: syld3an1 1284 syld3an2 1285 brelrng 4851 moriotass 5849 nnncan1 8167 lediv1 8799 modqval 10294 modqvalr 10295 modqcl 10296 flqpmodeq 10297 modq0 10299 modqge0 10302 modqlt 10303 modqdiffl 10305 modqdifz 10306 modqvalp1 10313 exp3val 10492 bcval4 10700 dvdsmultr1 11806 dvdssub2 11810 divalglemeuneg 11895 ndvdsadd 11903 grpsubf 12819 grpinvsub 12822 grpnpcan 12832 mulginvcom 12877 mulginvinv 12878 basgen2 13161 opnneiss 13238 cnpf2 13287 sincosq1lem 13826 |
Copyright terms: Public domain | W3C validator |