| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syld3an3 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
| Ref | Expression |
|---|---|
| syld3an3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| syld3an3.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syld3an3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | simp2 1000 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | syld3an3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | syld3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syld3an1 1295 syld3an2 1296 brelrng 4898 moriotass 5907 nnncan1 8264 lediv1 8898 modqval 10418 modqvalr 10419 modqcl 10420 flqpmodeq 10421 modq0 10423 modqge0 10426 modqlt 10427 modqdiffl 10429 modqdifz 10430 modqvalp1 10437 exp3val 10635 bcval4 10846 dvdsmultr1 11998 dvdssub2 12002 divalglemeuneg 12090 ndvdsadd 12098 grpsubf 13221 grpinvsub 13224 grpnpcan 13234 mulginvcom 13287 mulginvinv 13288 subgsubcl 13325 qussub 13377 ghmsub 13391 dvrcl 13701 unitdvcl 13702 basgen2 14327 opnneiss 14404 cnpf2 14453 sincosq1lem 15071 |
| Copyright terms: Public domain | W3C validator |