ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllembacc GIF version

Theorem tfrcllembacc 6252
Description: Lemma for tfrcl 6261. Each element of 𝐵 is an acceptable function. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfrcllembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllembacc.4 (𝜑𝐷𝑋)
tfrcllembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfrcllembacc (𝜑𝐵𝐴)
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐷,𝑓,𝑔,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑤)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,)   𝐷(𝑧,𝑤,)   𝑆(𝑧,𝑤,𝑔,)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,)   𝐺(𝑧,𝑤,𝑔,)   𝑋(𝑦,𝑧,𝑤,𝑔,)

Proof of Theorem tfrcllembacc
StepHypRef Expression
1 tfrcllembacc.3 . 2 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
2 simpr3 989 . . . . . . 7 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
3 tfrcl.f . . . . . . . 8 𝐹 = recs(𝐺)
4 tfrcl.g . . . . . . . . 9 (𝜑 → Fun 𝐺)
54ad2antrr 479 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → Fun 𝐺)
6 tfrcl.x . . . . . . . . 9 (𝜑 → Ord 𝑋)
76ad2antrr 479 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → Ord 𝑋)
8 simp1ll 1044 . . . . . . . . 9 ((((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) ∧ 𝑥𝑋𝑓:𝑥𝑆) → 𝜑)
9 tfrcl.ex . . . . . . . . 9 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
108, 9syld3an1 1262 . . . . . . . 8 ((((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
11 tfrcllemsucfn.1 . . . . . . . 8 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
12 tfrcllembacc.4 . . . . . . . . 9 (𝜑𝐷𝑋)
1312ad2antrr 479 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐷𝑋)
14 simplr 519 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑧𝐷)
15 tfrcllembacc.u . . . . . . . . . 10 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
1615adantlr 468 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
1716adantlr 468 . . . . . . . 8 ((((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
18 simpr1 987 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑔:𝑧𝑆)
19 simpr2 988 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑔𝐴)
203, 5, 7, 10, 11, 13, 14, 17, 18, 19tfrcllemsucaccv 6251 . . . . . . 7 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
212, 20eqeltrd 2216 . . . . . 6 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐴)
2221ex 114 . . . . 5 ((𝜑𝑧𝐷) → ((𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → 𝐴))
2322exlimdv 1791 . . . 4 ((𝜑𝑧𝐷) → (∃𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → 𝐴))
2423rexlimdva 2549 . . 3 (𝜑 → (∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → 𝐴))
2524abssdv 3171 . 2 (𝜑 → { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))} ⊆ 𝐴)
261, 25eqsstrid 3143 1 (𝜑𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wex 1468  wcel 1480  {cab 2125  wral 2416  wrex 2417  cun 3069  wss 3071  {csn 3527  cop 3530   cuni 3736  Ord word 4284  suc csuc 4287  cres 4541  Fun wfun 5117  wf 5119  cfv 5123  recscrecs 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131
This theorem is referenced by:  tfrcllembfn  6254  tfrcllemubacc  6256
  Copyright terms: Public domain W3C validator