ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllembacc GIF version

Theorem tfrcllembacc 6441
Description: Lemma for tfrcl 6450. Each element of 𝐵 is an acceptable function. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfrcllembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllembacc.4 (𝜑𝐷𝑋)
tfrcllembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfrcllembacc (𝜑𝐵𝐴)
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐷,𝑓,𝑔,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑤)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,)   𝐷(𝑧,𝑤,)   𝑆(𝑧,𝑤,𝑔,)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,)   𝐺(𝑧,𝑤,𝑔,)   𝑋(𝑦,𝑧,𝑤,𝑔,)

Proof of Theorem tfrcllembacc
StepHypRef Expression
1 tfrcllembacc.3 . 2 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
2 simpr3 1008 . . . . . . 7 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
3 tfrcl.f . . . . . . . 8 𝐹 = recs(𝐺)
4 tfrcl.g . . . . . . . . 9 (𝜑 → Fun 𝐺)
54ad2antrr 488 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → Fun 𝐺)
6 tfrcl.x . . . . . . . . 9 (𝜑 → Ord 𝑋)
76ad2antrr 488 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → Ord 𝑋)
8 simp1ll 1063 . . . . . . . . 9 ((((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) ∧ 𝑥𝑋𝑓:𝑥𝑆) → 𝜑)
9 tfrcl.ex . . . . . . . . 9 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
108, 9syld3an1 1296 . . . . . . . 8 ((((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
11 tfrcllemsucfn.1 . . . . . . . 8 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
12 tfrcllembacc.4 . . . . . . . . 9 (𝜑𝐷𝑋)
1312ad2antrr 488 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐷𝑋)
14 simplr 528 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑧𝐷)
15 tfrcllembacc.u . . . . . . . . . 10 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
1615adantlr 477 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
1716adantlr 477 . . . . . . . 8 ((((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
18 simpr1 1006 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑔:𝑧𝑆)
19 simpr2 1007 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑔𝐴)
203, 5, 7, 10, 11, 13, 14, 17, 18, 19tfrcllemsucaccv 6440 . . . . . . 7 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
212, 20eqeltrd 2282 . . . . . 6 (((𝜑𝑧𝐷) ∧ (𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐴)
2221ex 115 . . . . 5 ((𝜑𝑧𝐷) → ((𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → 𝐴))
2322exlimdv 1842 . . . 4 ((𝜑𝑧𝐷) → (∃𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → 𝐴))
2423rexlimdva 2623 . . 3 (𝜑 → (∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → 𝐴))
2524abssdv 3267 . 2 (𝜑 → { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))} ⊆ 𝐴)
261, 25eqsstrid 3239 1 (𝜑𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wex 1515  wcel 2176  {cab 2191  wral 2484  wrex 2485  cun 3164  wss 3166  {csn 3633  cop 3636   cuni 3850  Ord word 4409  suc csuc 4412  cres 4677  Fun wfun 5265  wf 5267  cfv 5271  recscrecs 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279
This theorem is referenced by:  tfrcllembfn  6443  tfrcllemubacc  6445
  Copyright terms: Public domain W3C validator