ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3com13 GIF version

Theorem 3com13 1203
Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3com13 ((𝜒𝜓𝜑) → 𝜃)

Proof of Theorem 3com13
StepHypRef Expression
1 3anrev 983 . 2 ((𝜒𝜓𝜑) ↔ (𝜑𝜓𝜒))
2 3exp.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2sylbi 120 1 ((𝜒𝜓𝜑) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  3coml  1205  3adant3l  1229  3adant3r  1230  syld3an1  1279  oaword1  6450  nnacan  6491  elmapg  6639  subadd  8122  xrltso  9753  iooshf  9909  dvdsmulc  11781  lcmdvdsb  12038  infpnlem1  12311
  Copyright terms: Public domain W3C validator