![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3com13 | GIF version |
Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com13 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anrev 988 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
2 | 3exp.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylbi 121 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: 3coml 1210 3adant3l 1234 3adant3r 1235 syld3an1 1284 oaword1 6474 nnacan 6515 elmapg 6663 subadd 8162 xrltso 9798 iooshf 9954 dvdsmulc 11828 lcmdvdsb 12086 infpnlem1 12359 |
Copyright terms: Public domain | W3C validator |