Proof of Theorem div2negap
| Step | Hyp | Ref
| Expression |
| 1 | | negcl 8226 |
. . . . 5
⊢ (𝐵 ∈ ℂ → -𝐵 ∈
ℂ) |
| 2 | 1 | 3ad2ant2 1021 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -𝐵 ∈ ℂ) |
| 3 | | simp1 999 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐴 ∈ ℂ) |
| 4 | | simp2 1000 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ∈ ℂ) |
| 5 | | simp3 1001 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 # 0) |
| 6 | | div12ap 8721 |
. . . 4
⊢ ((-𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (-𝐵 · (𝐴 / 𝐵)) = (𝐴 · (-𝐵 / 𝐵))) |
| 7 | 2, 3, 4, 5, 6 | syl112anc 1253 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐵 · (𝐴 / 𝐵)) = (𝐴 · (-𝐵 / 𝐵))) |
| 8 | | divnegap 8733 |
. . . . . . 7
⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -(𝐵 / 𝐵) = (-𝐵 / 𝐵)) |
| 9 | 4, 8 | syld3an1 1295 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -(𝐵 / 𝐵) = (-𝐵 / 𝐵)) |
| 10 | | dividap 8728 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 / 𝐵) = 1) |
| 11 | 10 | 3adant1 1017 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 / 𝐵) = 1) |
| 12 | 11 | negeqd 8221 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -(𝐵 / 𝐵) = -1) |
| 13 | 9, 12 | eqtr3d 2231 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐵 / 𝐵) = -1) |
| 14 | 13 | oveq2d 5938 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 · (-𝐵 / 𝐵)) = (𝐴 · -1)) |
| 15 | | ax-1cn 7972 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
| 16 | 15 | negcli 8294 |
. . . . . . 7
⊢ -1 ∈
ℂ |
| 17 | | mulcom 8008 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ -1 ∈
ℂ) → (𝐴 ·
-1) = (-1 · 𝐴)) |
| 18 | 16, 17 | mpan2 425 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (𝐴 · -1) = (-1 ·
𝐴)) |
| 19 | | mulm1 8426 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (-1
· 𝐴) = -𝐴) |
| 20 | 18, 19 | eqtrd 2229 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝐴 · -1) = -𝐴) |
| 21 | 20 | 3ad2ant1 1020 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 · -1) = -𝐴) |
| 22 | 14, 21 | eqtrd 2229 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 · (-𝐵 / 𝐵)) = -𝐴) |
| 23 | 7, 22 | eqtrd 2229 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐵 · (𝐴 / 𝐵)) = -𝐴) |
| 24 | | negcl 8226 |
. . . 4
⊢ (𝐴 ∈ ℂ → -𝐴 ∈
ℂ) |
| 25 | 24 | 3ad2ant1 1020 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -𝐴 ∈ ℂ) |
| 26 | | divclap 8705 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) ∈ ℂ) |
| 27 | | negap0 8657 |
. . . . 5
⊢ (𝐵 ∈ ℂ → (𝐵 # 0 ↔ -𝐵 # 0)) |
| 28 | 27 | biimpa 296 |
. . . 4
⊢ ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → -𝐵 # 0) |
| 29 | 28 | 3adant1 1017 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -𝐵 # 0) |
| 30 | | divmulap 8702 |
. . 3
⊢ ((-𝐴 ∈ ℂ ∧ (𝐴 / 𝐵) ∈ ℂ ∧ (-𝐵 ∈ ℂ ∧ -𝐵 # 0)) → ((-𝐴 / -𝐵) = (𝐴 / 𝐵) ↔ (-𝐵 · (𝐴 / 𝐵)) = -𝐴)) |
| 31 | 25, 26, 2, 29, 30 | syl112anc 1253 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((-𝐴 / -𝐵) = (𝐴 / 𝐵) ↔ (-𝐵 · (𝐴 / 𝐵)) = -𝐴)) |
| 32 | 23, 31 | mpbird 167 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐴 / -𝐵) = (𝐴 / 𝐵)) |