Proof of Theorem div2negap
Step | Hyp | Ref
| Expression |
1 | | negcl 8119 |
. . . . 5
⊢ (𝐵 ∈ ℂ → -𝐵 ∈
ℂ) |
2 | 1 | 3ad2ant2 1014 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -𝐵 ∈ ℂ) |
3 | | simp1 992 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐴 ∈ ℂ) |
4 | | simp2 993 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ∈ ℂ) |
5 | | simp3 994 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 # 0) |
6 | | div12ap 8611 |
. . . 4
⊢ ((-𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (-𝐵 · (𝐴 / 𝐵)) = (𝐴 · (-𝐵 / 𝐵))) |
7 | 2, 3, 4, 5, 6 | syl112anc 1237 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐵 · (𝐴 / 𝐵)) = (𝐴 · (-𝐵 / 𝐵))) |
8 | | divnegap 8623 |
. . . . . . 7
⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -(𝐵 / 𝐵) = (-𝐵 / 𝐵)) |
9 | 4, 8 | syld3an1 1279 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -(𝐵 / 𝐵) = (-𝐵 / 𝐵)) |
10 | | dividap 8618 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 / 𝐵) = 1) |
11 | 10 | 3adant1 1010 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 / 𝐵) = 1) |
12 | 11 | negeqd 8114 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -(𝐵 / 𝐵) = -1) |
13 | 9, 12 | eqtr3d 2205 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐵 / 𝐵) = -1) |
14 | 13 | oveq2d 5869 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 · (-𝐵 / 𝐵)) = (𝐴 · -1)) |
15 | | ax-1cn 7867 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
16 | 15 | negcli 8187 |
. . . . . . 7
⊢ -1 ∈
ℂ |
17 | | mulcom 7903 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ -1 ∈
ℂ) → (𝐴 ·
-1) = (-1 · 𝐴)) |
18 | 16, 17 | mpan2 423 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (𝐴 · -1) = (-1 ·
𝐴)) |
19 | | mulm1 8319 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (-1
· 𝐴) = -𝐴) |
20 | 18, 19 | eqtrd 2203 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝐴 · -1) = -𝐴) |
21 | 20 | 3ad2ant1 1013 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 · -1) = -𝐴) |
22 | 14, 21 | eqtrd 2203 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 · (-𝐵 / 𝐵)) = -𝐴) |
23 | 7, 22 | eqtrd 2203 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐵 · (𝐴 / 𝐵)) = -𝐴) |
24 | | negcl 8119 |
. . . 4
⊢ (𝐴 ∈ ℂ → -𝐴 ∈
ℂ) |
25 | 24 | 3ad2ant1 1013 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -𝐴 ∈ ℂ) |
26 | | divclap 8595 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) ∈ ℂ) |
27 | | negap0 8549 |
. . . . 5
⊢ (𝐵 ∈ ℂ → (𝐵 # 0 ↔ -𝐵 # 0)) |
28 | 27 | biimpa 294 |
. . . 4
⊢ ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → -𝐵 # 0) |
29 | 28 | 3adant1 1010 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -𝐵 # 0) |
30 | | divmulap 8592 |
. . 3
⊢ ((-𝐴 ∈ ℂ ∧ (𝐴 / 𝐵) ∈ ℂ ∧ (-𝐵 ∈ ℂ ∧ -𝐵 # 0)) → ((-𝐴 / -𝐵) = (𝐴 / 𝐵) ↔ (-𝐵 · (𝐴 / 𝐵)) = -𝐴)) |
31 | 25, 26, 2, 29, 30 | syl112anc 1237 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((-𝐴 / -𝐵) = (𝐴 / 𝐵) ↔ (-𝐵 · (𝐴 / 𝐵)) = -𝐴)) |
32 | 23, 31 | mpbird 166 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐴 / -𝐵) = (𝐴 / 𝐵)) |