ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div2negap GIF version

Theorem div2negap 8762
Description: Quotient of two negatives. (Contributed by Jim Kingdon, 27-Feb-2020.)
Assertion
Ref Expression
div2negap ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐴 / -𝐵) = (𝐴 / 𝐵))

Proof of Theorem div2negap
StepHypRef Expression
1 negcl 8226 . . . . 5 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
213ad2ant2 1021 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -𝐵 ∈ ℂ)
3 simp1 999 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐴 ∈ ℂ)
4 simp2 1000 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ∈ ℂ)
5 simp3 1001 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 # 0)
6 div12ap 8721 . . . 4 ((-𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (-𝐵 · (𝐴 / 𝐵)) = (𝐴 · (-𝐵 / 𝐵)))
72, 3, 4, 5, 6syl112anc 1253 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐵 · (𝐴 / 𝐵)) = (𝐴 · (-𝐵 / 𝐵)))
8 divnegap 8733 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -(𝐵 / 𝐵) = (-𝐵 / 𝐵))
94, 8syld3an1 1295 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -(𝐵 / 𝐵) = (-𝐵 / 𝐵))
10 dividap 8728 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 / 𝐵) = 1)
11103adant1 1017 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 / 𝐵) = 1)
1211negeqd 8221 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -(𝐵 / 𝐵) = -1)
139, 12eqtr3d 2231 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐵 / 𝐵) = -1)
1413oveq2d 5938 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 · (-𝐵 / 𝐵)) = (𝐴 · -1))
15 ax-1cn 7972 . . . . . . . 8 1 ∈ ℂ
1615negcli 8294 . . . . . . 7 -1 ∈ ℂ
17 mulcom 8008 . . . . . . 7 ((𝐴 ∈ ℂ ∧ -1 ∈ ℂ) → (𝐴 · -1) = (-1 · 𝐴))
1816, 17mpan2 425 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 · -1) = (-1 · 𝐴))
19 mulm1 8426 . . . . . 6 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
2018, 19eqtrd 2229 . . . . 5 (𝐴 ∈ ℂ → (𝐴 · -1) = -𝐴)
21203ad2ant1 1020 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 · -1) = -𝐴)
2214, 21eqtrd 2229 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 · (-𝐵 / 𝐵)) = -𝐴)
237, 22eqtrd 2229 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐵 · (𝐴 / 𝐵)) = -𝐴)
24 negcl 8226 . . . 4 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
25243ad2ant1 1020 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -𝐴 ∈ ℂ)
26 divclap 8705 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) ∈ ℂ)
27 negap0 8657 . . . . 5 (𝐵 ∈ ℂ → (𝐵 # 0 ↔ -𝐵 # 0))
2827biimpa 296 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → -𝐵 # 0)
29283adant1 1017 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -𝐵 # 0)
30 divmulap 8702 . . 3 ((-𝐴 ∈ ℂ ∧ (𝐴 / 𝐵) ∈ ℂ ∧ (-𝐵 ∈ ℂ ∧ -𝐵 # 0)) → ((-𝐴 / -𝐵) = (𝐴 / 𝐵) ↔ (-𝐵 · (𝐴 / 𝐵)) = -𝐴))
3125, 26, 2, 29, 30syl112anc 1253 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((-𝐴 / -𝐵) = (𝐴 / 𝐵) ↔ (-𝐵 · (𝐴 / 𝐵)) = -𝐴))
3223, 31mpbird 167 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐴 / -𝐵) = (𝐴 / 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4033  (class class class)co 5922  cc 7877  0cc0 7879  1c1 7880   · cmul 7884  -cneg 8198   # cap 8608   / cdiv 8699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700
This theorem is referenced by:  divneg2ap  8763  div2negapd  8832  div2subap  8864
  Copyright terms: Public domain W3C validator