Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ppncan | GIF version |
Description: Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.) |
Ref | Expression |
---|---|
ppncan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐶 − 𝐵)) = (𝐴 + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcom 8016 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
2 | 1 | 3adant3 1002 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
3 | 2 | oveq1d 5841 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐵 − 𝐶)) = ((𝐵 + 𝐴) − (𝐵 − 𝐶))) |
4 | addcl 7859 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
5 | 4 | 3adant3 1002 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
6 | subsub2 8107 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐵 − 𝐶)) = ((𝐴 + 𝐵) + (𝐶 − 𝐵))) | |
7 | 5, 6 | syld3an1 1266 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐵 − 𝐶)) = ((𝐴 + 𝐵) + (𝐶 − 𝐵))) |
8 | pnncan 8120 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 + 𝐴) − (𝐵 − 𝐶)) = (𝐴 + 𝐶)) | |
9 | 8 | 3com12 1189 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 + 𝐴) − (𝐵 − 𝐶)) = (𝐴 + 𝐶)) |
10 | 3, 7, 9 | 3eqtr3d 2198 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐶 − 𝐵)) = (𝐴 + 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 963 = wceq 1335 ∈ wcel 2128 (class class class)co 5826 ℂcc 7732 + caddc 7737 − cmin 8050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4084 ax-pow 4137 ax-pr 4171 ax-setind 4498 ax-resscn 7826 ax-1cn 7827 ax-icn 7829 ax-addcl 7830 ax-addrcl 7831 ax-mulcl 7832 ax-addcom 7834 ax-addass 7836 ax-distr 7838 ax-i2m1 7839 ax-0id 7842 ax-rnegex 7843 ax-cnre 7845 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-br 3968 df-opab 4028 df-id 4255 df-xp 4594 df-rel 4595 df-cnv 4596 df-co 4597 df-dm 4598 df-iota 5137 df-fun 5174 df-fv 5180 df-riota 5782 df-ov 5829 df-oprab 5830 df-mpo 5831 df-sub 8052 |
This theorem is referenced by: ppncand 8230 halfaddsub 9072 pythagtriplem4 12158 pythagtriplem14 12167 ptolemy 13215 |
Copyright terms: Public domain | W3C validator |