| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbnv | GIF version | ||
| Description: Version of sbn 2003 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 18-Dec-2017.) |
| Ref | Expression |
|---|---|
| sbnv | ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb6 1933 | . . 3 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)) | |
| 2 | alinexa 1649 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 3 | 1, 2 | bitri 184 | . 2 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| 4 | sb5 1934 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 5 | 3, 4 | xchbinxr 687 | 1 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1393 ∃wex 1538 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-sb 1809 |
| This theorem is referenced by: sbn 2003 |
| Copyright terms: Public domain | W3C validator |