ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbnv GIF version

Theorem sbnv 1913
Description: Version of sbn 1981 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 18-Dec-2017.)
Assertion
Ref Expression
sbnv ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sbnv
StepHypRef Expression
1 sb6 1911 . . 3 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑))
2 alinexa 1627 . . 3 (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦𝜑))
31, 2bitri 184 . 2 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝑦𝜑))
4 sb5 1912 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
53, 4xchbinxr 685 1 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wal 1371  wex 1516  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-sb 1787
This theorem is referenced by:  sbn  1981
  Copyright terms: Public domain W3C validator