ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbnv GIF version

Theorem sbnv 1876
Description: Version of sbn 1940 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 18-Dec-2017.)
Assertion
Ref Expression
sbnv ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sbnv
StepHypRef Expression
1 sb6 1874 . . 3 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑))
2 alinexa 1591 . . 3 (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦𝜑))
31, 2bitri 183 . 2 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝑦𝜑))
4 sb5 1875 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
53, 4xchbinxr 673 1 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wal 1341  wex 1480  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-sb 1751
This theorem is referenced by:  sbn  1940
  Copyright terms: Public domain W3C validator