ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difab GIF version

Theorem difab 3391
Description: Difference of two class abstractions. (Contributed by NM, 23-Oct-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difab ({𝑥𝜑} ∖ {𝑥𝜓}) = {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)}

Proof of Theorem difab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-clab 2152 . . 3 (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)} ↔ [𝑦 / 𝑥](𝜑 ∧ ¬ 𝜓))
2 sban 1943 . . 3 ([𝑦 / 𝑥](𝜑 ∧ ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥] ¬ 𝜓))
3 df-clab 2152 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
43bicomi 131 . . . 4 ([𝑦 / 𝑥]𝜑𝑦 ∈ {𝑥𝜑})
5 sbn 1940 . . . . 5 ([𝑦 / 𝑥] ¬ 𝜓 ↔ ¬ [𝑦 / 𝑥]𝜓)
6 df-clab 2152 . . . . 5 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
75, 6xchbinxr 673 . . . 4 ([𝑦 / 𝑥] ¬ 𝜓 ↔ ¬ 𝑦 ∈ {𝑥𝜓})
84, 7anbi12i 456 . . 3 (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥] ¬ 𝜓) ↔ (𝑦 ∈ {𝑥𝜑} ∧ ¬ 𝑦 ∈ {𝑥𝜓}))
91, 2, 83bitrri 206 . 2 ((𝑦 ∈ {𝑥𝜑} ∧ ¬ 𝑦 ∈ {𝑥𝜓}) ↔ 𝑦 ∈ {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)})
109difeqri 3242 1 ({𝑥𝜑} ∖ {𝑥𝜓}) = {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103   = wceq 1343  [wsb 1750  wcel 2136  {cab 2151  cdif 3113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118
This theorem is referenced by:  notab  3392  difrab  3396  notrab  3399  imadiflem  5267  imadif  5268
  Copyright terms: Public domain W3C validator