![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iindif2m | GIF version |
Description: Indexed intersection of class difference. Compare to Theorem "De Morgan's laws" in [Enderton] p. 31. (Contributed by Jim Kingdon, 17-Aug-2018.) |
Ref | Expression |
---|---|
iindif2m | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.28mv 3355 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶))) | |
2 | eldif 2993 | . . . . . 6 ⊢ (𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) | |
3 | 2 | bicomi 130 | . . . . 5 ⊢ ((𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶) ↔ 𝑦 ∈ (𝐵 ∖ 𝐶)) |
4 | 3 | ralbii 2378 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶)) |
5 | ralnex 2363 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
6 | eliun 3708 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
7 | 5, 6 | xchbinxr 641 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) |
8 | 7 | anbi2i 445 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) |
9 | 1, 4, 8 | 3bitr3g 220 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶))) |
10 | vex 2615 | . . . 4 ⊢ 𝑦 ∈ V | |
11 | eliin 3709 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶))) | |
12 | 10, 11 | ax-mp 7 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶)) |
13 | eldif 2993 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
14 | 9, 12, 13 | 3bitr4g 221 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ 𝑦 ∈ (𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶))) |
15 | 14 | eqrdv 2081 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1285 ∃wex 1422 ∈ wcel 1434 ∀wral 2353 ∃wrex 2354 Vcvv 2612 ∖ cdif 2981 ∪ ciun 3704 ∩ ciin 3705 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2614 df-dif 2986 df-iun 3706 df-iin 3707 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |