ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iindif2m GIF version

Theorem iindif2m 3771
Description: Indexed intersection of class difference. Compare to Theorem "De Morgan's laws" in [Enderton] p. 31. (Contributed by Jim Kingdon, 17-Aug-2018.)
Assertion
Ref Expression
iindif2m (∃𝑥 𝑥𝐴 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iindif2m
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.28mv 3355 . . . 4 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶) ↔ (𝑦𝐵 ∧ ∀𝑥𝐴 ¬ 𝑦𝐶)))
2 eldif 2993 . . . . . 6 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦𝐶))
32bicomi 130 . . . . 5 ((𝑦𝐵 ∧ ¬ 𝑦𝐶) ↔ 𝑦 ∈ (𝐵𝐶))
43ralbii 2378 . . . 4 (∀𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶))
5 ralnex 2363 . . . . . 6 (∀𝑥𝐴 ¬ 𝑦𝐶 ↔ ¬ ∃𝑥𝐴 𝑦𝐶)
6 eliun 3708 . . . . . 6 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
75, 6xchbinxr 641 . . . . 5 (∀𝑥𝐴 ¬ 𝑦𝐶 ↔ ¬ 𝑦 𝑥𝐴 𝐶)
87anbi2i 445 . . . 4 ((𝑦𝐵 ∧ ∀𝑥𝐴 ¬ 𝑦𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
91, 4, 83bitr3g 220 . . 3 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶)))
10 vex 2615 . . . 4 𝑦 ∈ V
11 eliin 3709 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
1210, 11ax-mp 7 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶))
13 eldif 2993 . . 3 (𝑦 ∈ (𝐵 𝑥𝐴 𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
149, 12, 133bitr4g 221 . 2 (∃𝑥 𝑥𝐴 → (𝑦 𝑥𝐴 (𝐵𝐶) ↔ 𝑦 ∈ (𝐵 𝑥𝐴 𝐶)))
1514eqrdv 2081 1 (∃𝑥 𝑥𝐴 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1285  wex 1422  wcel 1434  wral 2353  wrex 2354  Vcvv 2612  cdif 2981   ciun 3704   ciin 3705
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2614  df-dif 2986  df-iun 3706  df-iin 3707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator