![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr3di | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 1 | bicomi 132 | . 2 ⊢ (𝜃 ↔ 𝜓) |
3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | bitr2id 193 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: xordc 1403 sbal2 2036 eqsnm 3782 fnressn 5745 fressnfv 5746 eluniimadm 5809 genpassl 7586 genpassu 7587 1idprl 7652 1idpru 7653 axcaucvglemres 7961 negeq0 8275 muleqadd 8689 crap0 8979 addltmul 9222 fzrev 10153 modq0 10403 cjap0 11054 cjne0 11055 caucvgrelemrec 11126 lenegsq 11242 isumss 11537 fsumsplit 11553 sumsplitdc 11578 dvdsabseq 11992 pceu 12436 oddennn 12552 xpsfrnel 12930 metrest 14685 elabgf0 15339 |
Copyright terms: Public domain | W3C validator |