ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitr3di GIF version

Theorem bitr3di 195
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.)
Hypotheses
Ref Expression
bitr3di.1 (𝜑 → (𝜓𝜒))
bitr3di.2 (𝜓𝜃)
Assertion
Ref Expression
bitr3di (𝜑 → (𝜒𝜃))

Proof of Theorem bitr3di
StepHypRef Expression
1 bitr3di.2 . . 3 (𝜓𝜃)
21bicomi 132 . 2 (𝜃𝜓)
3 bitr3di.1 . 2 (𝜑 → (𝜓𝜒))
42, 3bitr2id 193 1 (𝜑 → (𝜒𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  xordc  1414  sbal2  2051  eqsnm  3812  fnressn  5798  fressnfv  5799  eluniimadm  5862  iftrueb01  7376  genpassl  7679  genpassu  7680  1idprl  7745  1idpru  7746  axcaucvglemres  8054  negeq0  8368  muleqadd  8783  crap0  9073  addltmul  9316  fzrev  10248  modq0  10518  cjap0  11384  cjne0  11385  caucvgrelemrec  11456  lenegsq  11572  isumss  11868  fsumsplit  11884  sumsplitdc  11909  dvdsabseq  12324  pceu  12784  oddennn  12929  xpsfrnel  13343  metrest  15145  elabgf0  16051
  Copyright terms: Public domain W3C validator