| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3di | GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 1 | bicomi 132 | . 2 ⊢ (𝜃 ↔ 𝜓) |
| 3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | bitr2id 193 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: xordc 1414 sbal2 2051 eqsnm 3812 fnressn 5798 fressnfv 5799 eluniimadm 5862 iftrueb01 7376 genpassl 7679 genpassu 7680 1idprl 7745 1idpru 7746 axcaucvglemres 8054 negeq0 8368 muleqadd 8783 crap0 9073 addltmul 9316 fzrev 10248 modq0 10518 cjap0 11384 cjne0 11385 caucvgrelemrec 11456 lenegsq 11572 isumss 11868 fsumsplit 11884 sumsplitdc 11909 dvdsabseq 12324 pceu 12784 oddennn 12929 xpsfrnel 13343 metrest 15145 elabgf0 16051 |
| Copyright terms: Public domain | W3C validator |