| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3di | GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 1 | bicomi 132 | . 2 ⊢ (𝜃 ↔ 𝜓) |
| 3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | bitr2id 193 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: xordc 1403 sbal2 2039 eqsnm 3786 fnressn 5751 fressnfv 5752 eluniimadm 5815 genpassl 7610 genpassu 7611 1idprl 7676 1idpru 7677 axcaucvglemres 7985 negeq0 8299 muleqadd 8714 crap0 9004 addltmul 9247 fzrev 10178 modq0 10440 cjap0 11091 cjne0 11092 caucvgrelemrec 11163 lenegsq 11279 isumss 11575 fsumsplit 11591 sumsplitdc 11616 dvdsabseq 12031 pceu 12491 oddennn 12636 xpsfrnel 13048 metrest 14828 elabgf0 15509 |
| Copyright terms: Public domain | W3C validator |