![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr3di | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 1 | bicomi 132 | . 2 ⊢ (𝜃 ↔ 𝜓) |
3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | bitr2id 193 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: xordc 1403 sbal2 2032 eqsnm 3770 fnressn 5723 fressnfv 5724 eluniimadm 5787 genpassl 7554 genpassu 7555 1idprl 7620 1idpru 7621 axcaucvglemres 7929 negeq0 8242 muleqadd 8656 crap0 8946 addltmul 9186 fzrev 10116 modq0 10362 cjap0 10951 cjne0 10952 caucvgrelemrec 11023 lenegsq 11139 isumss 11434 fsumsplit 11450 sumsplitdc 11475 dvdsabseq 11888 pceu 12330 oddennn 12446 xpsfrnel 12823 metrest 14483 elabgf0 15007 |
Copyright terms: Public domain | W3C validator |