ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitr3di GIF version

Theorem bitr3di 195
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.)
Hypotheses
Ref Expression
bitr3di.1 (𝜑 → (𝜓𝜒))
bitr3di.2 (𝜓𝜃)
Assertion
Ref Expression
bitr3di (𝜑 → (𝜒𝜃))

Proof of Theorem bitr3di
StepHypRef Expression
1 bitr3di.2 . . 3 (𝜓𝜃)
21bicomi 132 . 2 (𝜃𝜓)
3 bitr3di.1 . 2 (𝜑 → (𝜓𝜒))
42, 3bitr2id 193 1 (𝜑 → (𝜒𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  xordc  1412  sbal2  2049  eqsnm  3798  fnressn  5777  fressnfv  5778  eluniimadm  5841  genpassl  7644  genpassu  7645  1idprl  7710  1idpru  7711  axcaucvglemres  8019  negeq0  8333  muleqadd  8748  crap0  9038  addltmul  9281  fzrev  10213  modq0  10481  cjap0  11262  cjne0  11263  caucvgrelemrec  11334  lenegsq  11450  isumss  11746  fsumsplit  11762  sumsplitdc  11787  dvdsabseq  12202  pceu  12662  oddennn  12807  xpsfrnel  13220  metrest  15022  elabgf0  15787
  Copyright terms: Public domain W3C validator