Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr3di | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 1 | bicomi 131 | . 2 ⊢ (𝜃 ↔ 𝜓) |
3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | bitr2id 192 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: xordc 1387 sbal2 2013 eqsnm 3742 fnressn 5682 fressnfv 5683 eluniimadm 5744 genpassl 7486 genpassu 7487 1idprl 7552 1idpru 7553 axcaucvglemres 7861 negeq0 8173 muleqadd 8586 crap0 8874 addltmul 9114 fzrev 10040 modq0 10285 cjap0 10871 cjne0 10872 caucvgrelemrec 10943 lenegsq 11059 isumss 11354 fsumsplit 11370 sumsplitdc 11395 dvdsabseq 11807 pceu 12249 oddennn 12347 metrest 13300 elabgf0 13812 |
Copyright terms: Public domain | W3C validator |