| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3di | GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 1 | bicomi 132 | . 2 ⊢ (𝜃 ↔ 𝜓) |
| 3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | bitr2id 193 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: xordc 1412 sbal2 2049 eqsnm 3798 fnressn 5777 fressnfv 5778 eluniimadm 5841 genpassl 7644 genpassu 7645 1idprl 7710 1idpru 7711 axcaucvglemres 8019 negeq0 8333 muleqadd 8748 crap0 9038 addltmul 9281 fzrev 10213 modq0 10481 cjap0 11262 cjne0 11263 caucvgrelemrec 11334 lenegsq 11450 isumss 11746 fsumsplit 11762 sumsplitdc 11787 dvdsabseq 12202 pceu 12662 oddennn 12807 xpsfrnel 13220 metrest 15022 elabgf0 15787 |
| Copyright terms: Public domain | W3C validator |