| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3di | GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 1 | bicomi 132 | . 2 ⊢ (𝜃 ↔ 𝜓) |
| 3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | bitr2id 193 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: xordc 1403 sbal2 2039 eqsnm 3786 fnressn 5751 fressnfv 5752 eluniimadm 5815 genpassl 7608 genpassu 7609 1idprl 7674 1idpru 7675 axcaucvglemres 7983 negeq0 8297 muleqadd 8712 crap0 9002 addltmul 9245 fzrev 10176 modq0 10438 cjap0 11089 cjne0 11090 caucvgrelemrec 11161 lenegsq 11277 isumss 11573 fsumsplit 11589 sumsplitdc 11614 dvdsabseq 12029 pceu 12489 oddennn 12634 xpsfrnel 13046 metrest 14826 elabgf0 15507 |
| Copyright terms: Public domain | W3C validator |