Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr3di | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 1 | bicomi 131 | . 2 ⊢ (𝜃 ↔ 𝜓) |
3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | bitr2id 192 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: xordc 1387 sbal2 2013 eqsnm 3740 fnressn 5679 fressnfv 5680 eluniimadm 5741 genpassl 7473 genpassu 7474 1idprl 7539 1idpru 7540 axcaucvglemres 7848 negeq0 8160 muleqadd 8573 crap0 8861 addltmul 9101 fzrev 10027 modq0 10272 cjap0 10858 cjne0 10859 caucvgrelemrec 10930 lenegsq 11046 isumss 11341 fsumsplit 11357 sumsplitdc 11382 dvdsabseq 11794 pceu 12236 oddennn 12334 metrest 13221 elabgf0 13733 |
Copyright terms: Public domain | W3C validator |