| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3di | GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 1 | bicomi 132 | . 2 ⊢ (𝜃 ↔ 𝜓) |
| 3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | bitr2id 193 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: xordc 1434 sbal2 2071 eqsnm 3833 fnressn 5829 fressnfv 5830 eluniimadm 5895 iftrueb01 7416 genpassl 7719 genpassu 7720 1idprl 7785 1idpru 7786 axcaucvglemres 8094 negeq0 8408 muleqadd 8823 crap0 9113 addltmul 9356 fzrev 10288 modq0 10559 cjap0 11426 cjne0 11427 caucvgrelemrec 11498 lenegsq 11614 isumss 11910 fsumsplit 11926 sumsplitdc 11951 dvdsabseq 12366 pceu 12826 oddennn 12971 xpsfrnel 13385 metrest 15188 elabgf0 16165 |
| Copyright terms: Public domain | W3C validator |