Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr3di | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
bitr3di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr3di.2 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
bitr3di | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3di.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 1 | bicomi 131 | . 2 ⊢ (𝜃 ↔ 𝜓) |
3 | bitr3di.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | bitr2id 192 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: xordc 1382 sbal2 2008 eqsnm 3734 fnressn 5670 fressnfv 5671 eluniimadm 5732 genpassl 7461 genpassu 7462 1idprl 7527 1idpru 7528 axcaucvglemres 7836 negeq0 8148 muleqadd 8561 crap0 8849 addltmul 9089 fzrev 10015 modq0 10260 cjap0 10845 cjne0 10846 caucvgrelemrec 10917 lenegsq 11033 isumss 11328 fsumsplit 11344 sumsplitdc 11369 dvdsabseq 11781 pceu 12223 oddennn 12321 metrest 13106 elabgf0 13618 |
Copyright terms: Public domain | W3C validator |