Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.12vvv | Structured version Visualization version GIF version |
Description: Version of 19.12vv 2347 with a disjoint variable condition, requiring fewer axioms. See also 19.12 2325. (Contributed by BJ, 18-Mar-2020.) |
Ref | Expression |
---|---|
19.12vvv | ⊢ (∃𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑦∃𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v 1943 | . . 3 ⊢ (∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑦𝜓)) | |
2 | 1 | exbii 1851 | . 2 ⊢ (∃𝑥∀𝑦(𝜑 → 𝜓) ↔ ∃𝑥(𝜑 → ∀𝑦𝜓)) |
3 | 19.36v 1992 | . 2 ⊢ (∃𝑥(𝜑 → ∀𝑦𝜓) ↔ (∀𝑥𝜑 → ∀𝑦𝜓)) | |
4 | 19.36v 1992 | . . . 4 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) | |
5 | 4 | albii 1823 | . . 3 ⊢ (∀𝑦∃𝑥(𝜑 → 𝜓) ↔ ∀𝑦(∀𝑥𝜑 → 𝜓)) |
6 | 19.21v 1943 | . . 3 ⊢ (∀𝑦(∀𝑥𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∀𝑦𝜓)) | |
7 | 5, 6 | bitr2i 275 | . 2 ⊢ ((∀𝑥𝜑 → ∀𝑦𝜓) ↔ ∀𝑦∃𝑥(𝜑 → 𝜓)) |
8 | 2, 3, 7 | 3bitri 296 | 1 ⊢ (∃𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑦∃𝑥(𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |