| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.12vvv | Structured version Visualization version GIF version | ||
| Description: Version of 19.12vv 2347 with a disjoint variable condition, requiring fewer axioms. See also 19.12 2328. (Contributed by BJ, 18-Mar-2020.) |
| Ref | Expression |
|---|---|
| 19.12vvv | ⊢ (∃𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑦∃𝑥(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21v 1940 | . . 3 ⊢ (∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑦𝜓)) | |
| 2 | 1 | exbii 1849 | . 2 ⊢ (∃𝑥∀𝑦(𝜑 → 𝜓) ↔ ∃𝑥(𝜑 → ∀𝑦𝜓)) |
| 3 | 19.36v 1994 | . 2 ⊢ (∃𝑥(𝜑 → ∀𝑦𝜓) ↔ (∀𝑥𝜑 → ∀𝑦𝜓)) | |
| 4 | 19.36v 1994 | . . . 4 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) | |
| 5 | 4 | albii 1820 | . . 3 ⊢ (∀𝑦∃𝑥(𝜑 → 𝜓) ↔ ∀𝑦(∀𝑥𝜑 → 𝜓)) |
| 6 | 19.21v 1940 | . . 3 ⊢ (∀𝑦(∀𝑥𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∀𝑦𝜓)) | |
| 7 | 5, 6 | bitr2i 276 | . 2 ⊢ ((∀𝑥𝜑 → ∀𝑦𝜓) ↔ ∀𝑦∃𝑥(𝜑 → 𝜓)) |
| 8 | 2, 3, 7 | 3bitri 297 | 1 ⊢ (∃𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑦∃𝑥(𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |