MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.12 Structured version   Visualization version   GIF version

Theorem 19.12 2326
Description: Theorem 19.12 of [Margaris] p. 89. Assuming the converse is a mistake sometimes made by beginners! But sometimes the converse does hold, as in 19.12vv 2348 and r19.12sn 4725. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 3-Jan-2018.)
Assertion
Ref Expression
19.12 (∃𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)

Proof of Theorem 19.12
StepHypRef Expression
1 nfa1 2149 . . 3 𝑦𝑦𝜑
21nfex 2323 . 2 𝑦𝑥𝑦𝜑
3 sp 2181 . . 3 (∀𝑦𝜑𝜑)
43eximi 1832 . 2 (∃𝑥𝑦𝜑 → ∃𝑥𝜑)
52, 4alrimi 2211 1 (∃𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wex 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-10 2139  ax-11 2155  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1777  df-nf 1781
This theorem is referenced by:  nfald  2327  bj-nfald  37120  pm11.61  44389
  Copyright terms: Public domain W3C validator