MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.12 Structured version   Visualization version   GIF version

Theorem 19.12 2331
Description: Theorem 19.12 of [Margaris] p. 89. Assuming the converse is a mistake sometimes made by beginners! But sometimes the converse does hold, as in 19.12vv 2353 and r19.12sn 4745. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 3-Jan-2018.)
Assertion
Ref Expression
19.12 (∃𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)

Proof of Theorem 19.12
StepHypRef Expression
1 nfa1 2152 . . 3 𝑦𝑦𝜑
21nfex 2328 . 2 𝑦𝑥𝑦𝜑
3 sp 2184 . . 3 (∀𝑦𝜑𝜑)
43eximi 1833 . 2 (∃𝑥𝑦𝜑 → ∃𝑥𝜑)
52, 4alrimi 2214 1 (∃𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 847  df-ex 1778  df-nf 1782
This theorem is referenced by:  nfald  2332  bj-nfald  37103  pm11.61  44362
  Copyright terms: Public domain W3C validator