MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.27v Structured version   Visualization version   GIF version

Theorem 19.27v 1994
Description: Version of 19.27 2223 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 3-Jun-2004.)
Assertion
Ref Expression
19.27v (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.27v
StepHypRef Expression
1 19.26 1874 . 2 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
2 19.3v 1986 . . 3 (∀𝑥𝜓𝜓)
32anbi2i 622 . 2 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (∀𝑥𝜑𝜓))
41, 3bitri 274 1 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  rexrsb  44479
  Copyright terms: Public domain W3C validator