| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.27v | Structured version Visualization version GIF version | ||
| Description: Version of 19.27 2226 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 3-Jun-2004.) |
| Ref | Expression |
|---|---|
| 19.27v | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 1869 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | |
| 2 | 19.3v 1980 | . . 3 ⊢ (∀𝑥𝜓 ↔ 𝜓) | |
| 3 | 2 | anbi2i 623 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 |
| This theorem is referenced by: rexrsb 47070 |
| Copyright terms: Public domain | W3C validator |