Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.27v | Structured version Visualization version GIF version |
Description: Version of 19.27 2223 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 3-Jun-2004.) |
Ref | Expression |
---|---|
19.27v | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1874 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | |
2 | 19.3v 1986 | . . 3 ⊢ (∀𝑥𝜓 ↔ 𝜓) | |
3 | 2 | anbi2i 622 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: rexrsb 44479 |
Copyright terms: Public domain | W3C validator |