| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.23t | Structured version Visualization version GIF version | ||
| Description: Closed form of Theorem 19.23 of [Margaris] p. 90. See 19.23 2216. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Wolf Lammen, 13-Aug-2020.) df-nf 1785 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by BJ, 8-Oct-2022.) |
| Ref | Expression |
|---|---|
| 19.23t | ⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.38b 1842 | . 2 ⊢ (Ⅎ𝑥𝜓 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) | |
| 2 | 19.3t 2206 | . . 3 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥𝜓 ↔ 𝜓)) | |
| 3 | 2 | imbi2d 340 | . 2 ⊢ (Ⅎ𝑥𝜓 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ (∃𝑥𝜑 → 𝜓))) |
| 4 | 1, 3 | bitr3d 281 | 1 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∃wex 1780 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: 19.23 2216 axie2 2700 r19.23t 3229 ceqsalt 3471 spcimgft 3500 sbciegftOLD 3775 bj-ceqsalt0 37001 bj-ceqsalt1 37002 wl-equsald 37656 wl-equsaldv 37657 |
| Copyright terms: Public domain | W3C validator |