MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23t Structured version   Visualization version   GIF version

Theorem 19.23t 2210
Description: Closed form of Theorem 19.23 of [Margaris] p. 90. See 19.23 2211. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Wolf Lammen, 13-Aug-2020.) df-nf 1784 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by BJ, 8-Oct-2022.)
Assertion
Ref Expression
19.23t (Ⅎ𝑥𝜓 → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))

Proof of Theorem 19.23t
StepHypRef Expression
1 19.38b 1841 . 2 (Ⅎ𝑥𝜓 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑𝜓)))
2 19.3t 2201 . . 3 (Ⅎ𝑥𝜓 → (∀𝑥𝜓𝜓))
32imbi2d 340 . 2 (Ⅎ𝑥𝜓 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ (∃𝑥𝜑𝜓)))
41, 3bitr3d 281 1 (Ⅎ𝑥𝜓 → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-nf 1784
This theorem is referenced by:  19.23  2211  axie2  2703  r19.23t  3255  ceqsalt  3515  spcimgft  3546  sbciegftOLD  3826  bj-ceqsalt0  36885  bj-ceqsalt1  36886  wl-equsald  37540  wl-equsaldv  37541
  Copyright terms: Public domain W3C validator