Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.23t | Structured version Visualization version GIF version |
Description: Closed form of Theorem 19.23 of [Margaris] p. 90. See 19.23 2204. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Wolf Lammen, 13-Aug-2020.) df-nf 1787 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by BJ, 8-Oct-2022.) |
Ref | Expression |
---|---|
19.23t | ⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.38b 1843 | . 2 ⊢ (Ⅎ𝑥𝜓 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) | |
2 | 19.3t 2194 | . . 3 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥𝜓 ↔ 𝜓)) | |
3 | 2 | imbi2d 341 | . 2 ⊢ (Ⅎ𝑥𝜓 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ (∃𝑥𝜑 → 𝜓))) |
4 | 1, 3 | bitr3d 280 | 1 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1782 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: 19.23 2204 axie2 2704 r19.23t 3246 ceqsalt 3462 vtoclgft 3492 sbciegft 3754 bj-ceqsalt0 35069 bj-ceqsalt1 35070 wl-equsald 35698 |
Copyright terms: Public domain | W3C validator |