Proof of Theorem cotr2g
| Step | Hyp | Ref
| Expression |
| 1 | | cotrg 6109 |
. 2
⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
| 2 | | nfv 1913 |
. . . . . 6
⊢
Ⅎ𝑦 𝑥 ∈ 𝐷 |
| 3 | | nfv 1913 |
. . . . . 6
⊢
Ⅎ𝑧 𝑥 ∈ 𝐷 |
| 4 | 2, 3 | 19.21-2 2208 |
. . . . 5
⊢
(∀𝑦∀𝑧(𝑥 ∈ 𝐷 → (𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) ↔ (𝑥 ∈ 𝐷 → ∀𝑦∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))))) |
| 5 | 4 | albii 1818 |
. . . 4
⊢
(∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐷 → (𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) ↔ ∀𝑥(𝑥 ∈ 𝐷 → ∀𝑦∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))))) |
| 6 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐵𝑦) |
| 7 | | id 22 |
. . . . . . . . . . 11
⊢ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) |
| 8 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑦𝐴𝑧) |
| 9 | 6, 7, 8 | 3jca 1128 |
. . . . . . . . . 10
⊢ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧)) |
| 10 | | simp2 1137 |
. . . . . . . . . 10
⊢ ((𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧) → (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) |
| 11 | 9, 10 | impbii 209 |
. . . . . . . . 9
⊢ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ↔ (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧)) |
| 12 | | cotr2g.d |
. . . . . . . . . . . 12
⊢ dom 𝐵 ⊆ 𝐷 |
| 13 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
| 14 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
| 15 | 13, 14 | breldm 5901 |
. . . . . . . . . . . 12
⊢ (𝑥𝐵𝑦 → 𝑥 ∈ dom 𝐵) |
| 16 | 12, 15 | sselid 3963 |
. . . . . . . . . . 11
⊢ (𝑥𝐵𝑦 → 𝑥 ∈ 𝐷) |
| 17 | 16 | pm4.71ri 560 |
. . . . . . . . . 10
⊢ (𝑥𝐵𝑦 ↔ (𝑥 ∈ 𝐷 ∧ 𝑥𝐵𝑦)) |
| 18 | | cotr2g.e |
. . . . . . . . . . . 12
⊢ (ran
𝐵 ∩ dom 𝐴) ⊆ 𝐸 |
| 19 | 13, 14 | brelrn 5935 |
. . . . . . . . . . . . 13
⊢ (𝑥𝐵𝑦 → 𝑦 ∈ ran 𝐵) |
| 20 | | vex 3468 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
| 21 | 14, 20 | breldm 5901 |
. . . . . . . . . . . . 13
⊢ (𝑦𝐴𝑧 → 𝑦 ∈ dom 𝐴) |
| 22 | | elin 3949 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (ran 𝐵 ∩ dom 𝐴) ↔ (𝑦 ∈ ran 𝐵 ∧ 𝑦 ∈ dom 𝐴)) |
| 23 | 22 | biimpri 228 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ran 𝐵 ∧ 𝑦 ∈ dom 𝐴) → 𝑦 ∈ (ran 𝐵 ∩ dom 𝐴)) |
| 24 | 19, 21, 23 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑦 ∈ (ran 𝐵 ∩ dom 𝐴)) |
| 25 | 18, 24 | sselid 3963 |
. . . . . . . . . . 11
⊢ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑦 ∈ 𝐸) |
| 26 | 25 | pm4.71ri 560 |
. . . . . . . . . 10
⊢ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ↔ (𝑦 ∈ 𝐸 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧))) |
| 27 | | cotr2g.f |
. . . . . . . . . . . 12
⊢ ran 𝐴 ⊆ 𝐹 |
| 28 | 14, 20 | brelrn 5935 |
. . . . . . . . . . . 12
⊢ (𝑦𝐴𝑧 → 𝑧 ∈ ran 𝐴) |
| 29 | 27, 28 | sselid 3963 |
. . . . . . . . . . 11
⊢ (𝑦𝐴𝑧 → 𝑧 ∈ 𝐹) |
| 30 | 29 | pm4.71ri 560 |
. . . . . . . . . 10
⊢ (𝑦𝐴𝑧 ↔ (𝑧 ∈ 𝐹 ∧ 𝑦𝐴𝑧)) |
| 31 | 17, 26, 30 | 3anbi123i 1155 |
. . . . . . . . 9
⊢ ((𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑥𝐵𝑦) ∧ (𝑦 ∈ 𝐸 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑦𝐴𝑧))) |
| 32 | | 3an6 1447 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐷 ∧ 𝑥𝐵𝑦) ∧ (𝑦 ∈ 𝐸 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑦𝐴𝑧)) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹) ∧ (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧))) |
| 33 | 10, 9 | impbii 209 |
. . . . . . . . . . 11
⊢ ((𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧) ↔ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) |
| 34 | 33 | anbi2i 623 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹) ∧ (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧)) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹) ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧))) |
| 35 | 32, 34 | bitri 275 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐷 ∧ 𝑥𝐵𝑦) ∧ (𝑦 ∈ 𝐸 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑦𝐴𝑧)) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹) ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧))) |
| 36 | 11, 31, 35 | 3bitri 297 |
. . . . . . . 8
⊢ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹) ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧))) |
| 37 | 36 | imbi1i 349 |
. . . . . . 7
⊢ (((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹) ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) → 𝑥𝐶𝑧)) |
| 38 | | impexp 450 |
. . . . . . 7
⊢ ((((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹) ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) → 𝑥𝐶𝑧) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹) → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) |
| 39 | | 3impexp 1358 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹) → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ (𝑥 ∈ 𝐷 → (𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))))) |
| 40 | 37, 38, 39 | 3bitri 297 |
. . . . . 6
⊢ (((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (𝑥 ∈ 𝐷 → (𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))))) |
| 41 | 40 | albii 1818 |
. . . . 5
⊢
(∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑧(𝑥 ∈ 𝐷 → (𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))))) |
| 42 | 41 | 2albii 1819 |
. . . 4
⊢
(∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐷 → (𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))))) |
| 43 | | df-ral 3051 |
. . . 4
⊢
(∀𝑥 ∈
𝐷 ∀𝑦∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑥(𝑥 ∈ 𝐷 → ∀𝑦∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))))) |
| 44 | 5, 42, 43 | 3bitr4i 303 |
. . 3
⊢
(∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑥 ∈ 𝐷 ∀𝑦∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) |
| 45 | | df-ral 3051 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐸 ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑦(𝑦 ∈ 𝐸 → ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) |
| 46 | | 19.21v 1938 |
. . . . . . . 8
⊢
(∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ (𝑦 ∈ 𝐸 → ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) |
| 47 | 46 | bicomi 224 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐸 → ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) |
| 48 | 47 | albii 1818 |
. . . . . 6
⊢
(∀𝑦(𝑦 ∈ 𝐸 → ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑦∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) |
| 49 | 45, 48 | bitri 275 |
. . . . 5
⊢
(∀𝑦 ∈
𝐸 ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑦∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) |
| 50 | 49 | bicomi 224 |
. . . 4
⊢
(∀𝑦∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑦 ∈ 𝐸 ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) |
| 51 | 50 | ralbii 3081 |
. . 3
⊢
(∀𝑥 ∈
𝐷 ∀𝑦∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐸 ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) |
| 52 | 44, 51 | bitri 275 |
. 2
⊢
(∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐸 ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) |
| 53 | | df-ral 3051 |
. . . . 5
⊢
(∀𝑧 ∈
𝐹 ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) |
| 54 | 53 | bicomi 224 |
. . . 4
⊢
(∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑧 ∈ 𝐹 ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
| 55 | 54 | ralbii 3081 |
. . 3
⊢
(∀𝑦 ∈
𝐸 ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑦 ∈ 𝐸 ∀𝑧 ∈ 𝐹 ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
| 56 | 55 | ralbii 3081 |
. 2
⊢
(∀𝑥 ∈
𝐷 ∀𝑦 ∈ 𝐸 ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐸 ∀𝑧 ∈ 𝐹 ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
| 57 | 1, 52, 56 | 3bitri 297 |
1
⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐸 ∀𝑧 ∈ 𝐹 ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |