MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotr2g Structured version   Visualization version   GIF version

Theorem cotr2g 14880
Description: Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr2 14881 for the main application. (Contributed by RP, 22-Mar-2020.)
Hypotheses
Ref Expression
cotr2g.d dom 𝐵𝐷
cotr2g.e (ran 𝐵 ∩ dom 𝐴) ⊆ 𝐸
cotr2g.f ran 𝐴𝐹
Assertion
Ref Expression
cotr2g ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝐷𝑦𝐸𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑦,𝐸,𝑧   𝑧,𝐹
Allowed substitution hints:   𝐸(𝑥)   𝐹(𝑥,𝑦)

Proof of Theorem cotr2g
StepHypRef Expression
1 cotrg 6058 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
2 nfv 1915 . . . . . 6 𝑦 𝑥𝐷
3 nfv 1915 . . . . . 6 𝑧 𝑥𝐷
42, 319.21-2 2212 . . . . 5 (∀𝑦𝑧(𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) ↔ (𝑥𝐷 → ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
54albii 1820 . . . 4 (∀𝑥𝑦𝑧(𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) ↔ ∀𝑥(𝑥𝐷 → ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
6 simpl 482 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐵𝑦)
7 id 22 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝑦𝐴𝑧) → (𝑥𝐵𝑦𝑦𝐴𝑧))
8 simpr 484 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑦𝐴𝑧)
96, 7, 83jca 1128 . . . . . . . . . 10 ((𝑥𝐵𝑦𝑦𝐴𝑧) → (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧))
10 simp2 1137 . . . . . . . . . 10 ((𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧) → (𝑥𝐵𝑦𝑦𝐴𝑧))
119, 10impbii 209 . . . . . . . . 9 ((𝑥𝐵𝑦𝑦𝐴𝑧) ↔ (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧))
12 cotr2g.d . . . . . . . . . . . 12 dom 𝐵𝐷
13 vex 3440 . . . . . . . . . . . . 13 𝑥 ∈ V
14 vex 3440 . . . . . . . . . . . . 13 𝑦 ∈ V
1513, 14breldm 5848 . . . . . . . . . . . 12 (𝑥𝐵𝑦𝑥 ∈ dom 𝐵)
1612, 15sselid 3932 . . . . . . . . . . 11 (𝑥𝐵𝑦𝑥𝐷)
1716pm4.71ri 560 . . . . . . . . . 10 (𝑥𝐵𝑦 ↔ (𝑥𝐷𝑥𝐵𝑦))
18 cotr2g.e . . . . . . . . . . . 12 (ran 𝐵 ∩ dom 𝐴) ⊆ 𝐸
1913, 14brelrn 5882 . . . . . . . . . . . . 13 (𝑥𝐵𝑦𝑦 ∈ ran 𝐵)
20 vex 3440 . . . . . . . . . . . . . 14 𝑧 ∈ V
2114, 20breldm 5848 . . . . . . . . . . . . 13 (𝑦𝐴𝑧𝑦 ∈ dom 𝐴)
22 elin 3918 . . . . . . . . . . . . . 14 (𝑦 ∈ (ran 𝐵 ∩ dom 𝐴) ↔ (𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴))
2322biimpri 228 . . . . . . . . . . . . 13 ((𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴) → 𝑦 ∈ (ran 𝐵 ∩ dom 𝐴))
2419, 21, 23syl2an 596 . . . . . . . . . . . 12 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑦 ∈ (ran 𝐵 ∩ dom 𝐴))
2518, 24sselid 3932 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑦𝐸)
2625pm4.71ri 560 . . . . . . . . . 10 ((𝑥𝐵𝑦𝑦𝐴𝑧) ↔ (𝑦𝐸 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)))
27 cotr2g.f . . . . . . . . . . . 12 ran 𝐴𝐹
2814, 20brelrn 5882 . . . . . . . . . . . 12 (𝑦𝐴𝑧𝑧 ∈ ran 𝐴)
2927, 28sselid 3932 . . . . . . . . . . 11 (𝑦𝐴𝑧𝑧𝐹)
3029pm4.71ri 560 . . . . . . . . . 10 (𝑦𝐴𝑧 ↔ (𝑧𝐹𝑦𝐴𝑧))
3117, 26, 303anbi123i 1155 . . . . . . . . 9 ((𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧) ↔ ((𝑥𝐷𝑥𝐵𝑦) ∧ (𝑦𝐸 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) ∧ (𝑧𝐹𝑦𝐴𝑧)))
32 3an6 1448 . . . . . . . . . 10 (((𝑥𝐷𝑥𝐵𝑦) ∧ (𝑦𝐸 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) ∧ (𝑧𝐹𝑦𝐴𝑧)) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧)))
3310, 9impbii 209 . . . . . . . . . . 11 ((𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧) ↔ (𝑥𝐵𝑦𝑦𝐴𝑧))
3433anbi2i 623 . . . . . . . . . 10 (((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧)) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)))
3532, 34bitri 275 . . . . . . . . 9 (((𝑥𝐷𝑥𝐵𝑦) ∧ (𝑦𝐸 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) ∧ (𝑧𝐹𝑦𝐴𝑧)) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)))
3611, 31, 353bitri 297 . . . . . . . 8 ((𝑥𝐵𝑦𝑦𝐴𝑧) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)))
3736imbi1i 349 . . . . . . 7 (((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) → 𝑥𝐶𝑧))
38 impexp 450 . . . . . . 7 ((((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) → 𝑥𝐶𝑧) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
39 3impexp 1359 . . . . . . 7 (((𝑥𝐷𝑦𝐸𝑧𝐹) → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ (𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
4037, 38, 393bitri 297 . . . . . 6 (((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
4140albii 1820 . . . . 5 (∀𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑧(𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
42412albii 1821 . . . 4 (∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑥𝑦𝑧(𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
43 df-ral 3048 . . . 4 (∀𝑥𝐷𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑥(𝑥𝐷 → ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
445, 42, 433bitr4i 303 . . 3 (∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑥𝐷𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
45 df-ral 3048 . . . . . 6 (∀𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑦(𝑦𝐸 → ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
46 19.21v 1940 . . . . . . . 8 (∀𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ (𝑦𝐸 → ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
4746bicomi 224 . . . . . . 7 ((𝑦𝐸 → ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
4847albii 1820 . . . . . 6 (∀𝑦(𝑦𝐸 → ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
4945, 48bitri 275 . . . . 5 (∀𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
5049bicomi 224 . . . 4 (∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
5150ralbii 3078 . . 3 (∀𝑥𝐷𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑥𝐷𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
5244, 51bitri 275 . 2 (∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑥𝐷𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
53 df-ral 3048 . . . . 5 (∀𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
5453bicomi 224 . . . 4 (∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
5554ralbii 3078 . . 3 (∀𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑦𝐸𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
5655ralbii 3078 . 2 (∀𝑥𝐷𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑥𝐷𝑦𝐸𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
571, 52, 563bitri 297 1 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝐷𝑦𝐸𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539  wcel 2111  wral 3047  cin 3901  wss 3902   class class class wbr 5091  dom cdm 5616  ran crn 5617  ccom 5620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627
This theorem is referenced by:  cotr2  14881
  Copyright terms: Public domain W3C validator