MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotr2g Structured version   Visualization version   GIF version

Theorem cotr2g 14687
Description: Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr2 14688 for the main application. (Contributed by RP, 22-Mar-2020.)
Hypotheses
Ref Expression
cotr2g.d dom 𝐵𝐷
cotr2g.e (ran 𝐵 ∩ dom 𝐴) ⊆ 𝐸
cotr2g.f ran 𝐴𝐹
Assertion
Ref Expression
cotr2g ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝐷𝑦𝐸𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑦,𝐸,𝑧   𝑧,𝐹
Allowed substitution hints:   𝐸(𝑥)   𝐹(𝑥,𝑦)

Proof of Theorem cotr2g
StepHypRef Expression
1 cotrg 6016 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
2 nfv 1917 . . . . . 6 𝑦 𝑥𝐷
3 nfv 1917 . . . . . 6 𝑧 𝑥𝐷
42, 319.21-2 2202 . . . . 5 (∀𝑦𝑧(𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) ↔ (𝑥𝐷 → ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
54albii 1822 . . . 4 (∀𝑥𝑦𝑧(𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) ↔ ∀𝑥(𝑥𝐷 → ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
6 simpl 483 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐵𝑦)
7 id 22 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝑦𝐴𝑧) → (𝑥𝐵𝑦𝑦𝐴𝑧))
8 simpr 485 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑦𝐴𝑧)
96, 7, 83jca 1127 . . . . . . . . . 10 ((𝑥𝐵𝑦𝑦𝐴𝑧) → (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧))
10 simp2 1136 . . . . . . . . . 10 ((𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧) → (𝑥𝐵𝑦𝑦𝐴𝑧))
119, 10impbii 208 . . . . . . . . 9 ((𝑥𝐵𝑦𝑦𝐴𝑧) ↔ (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧))
12 cotr2g.d . . . . . . . . . . . 12 dom 𝐵𝐷
13 vex 3436 . . . . . . . . . . . . 13 𝑥 ∈ V
14 vex 3436 . . . . . . . . . . . . 13 𝑦 ∈ V
1513, 14breldm 5817 . . . . . . . . . . . 12 (𝑥𝐵𝑦𝑥 ∈ dom 𝐵)
1612, 15sselid 3919 . . . . . . . . . . 11 (𝑥𝐵𝑦𝑥𝐷)
1716pm4.71ri 561 . . . . . . . . . 10 (𝑥𝐵𝑦 ↔ (𝑥𝐷𝑥𝐵𝑦))
18 cotr2g.e . . . . . . . . . . . 12 (ran 𝐵 ∩ dom 𝐴) ⊆ 𝐸
1913, 14brelrn 5851 . . . . . . . . . . . . 13 (𝑥𝐵𝑦𝑦 ∈ ran 𝐵)
20 vex 3436 . . . . . . . . . . . . . 14 𝑧 ∈ V
2114, 20breldm 5817 . . . . . . . . . . . . 13 (𝑦𝐴𝑧𝑦 ∈ dom 𝐴)
22 elin 3903 . . . . . . . . . . . . . 14 (𝑦 ∈ (ran 𝐵 ∩ dom 𝐴) ↔ (𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴))
2322biimpri 227 . . . . . . . . . . . . 13 ((𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴) → 𝑦 ∈ (ran 𝐵 ∩ dom 𝐴))
2419, 21, 23syl2an 596 . . . . . . . . . . . 12 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑦 ∈ (ran 𝐵 ∩ dom 𝐴))
2518, 24sselid 3919 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑦𝐸)
2625pm4.71ri 561 . . . . . . . . . 10 ((𝑥𝐵𝑦𝑦𝐴𝑧) ↔ (𝑦𝐸 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)))
27 cotr2g.f . . . . . . . . . . . 12 ran 𝐴𝐹
2814, 20brelrn 5851 . . . . . . . . . . . 12 (𝑦𝐴𝑧𝑧 ∈ ran 𝐴)
2927, 28sselid 3919 . . . . . . . . . . 11 (𝑦𝐴𝑧𝑧𝐹)
3029pm4.71ri 561 . . . . . . . . . 10 (𝑦𝐴𝑧 ↔ (𝑧𝐹𝑦𝐴𝑧))
3117, 26, 303anbi123i 1154 . . . . . . . . 9 ((𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧) ↔ ((𝑥𝐷𝑥𝐵𝑦) ∧ (𝑦𝐸 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) ∧ (𝑧𝐹𝑦𝐴𝑧)))
32 3an6 1445 . . . . . . . . . 10 (((𝑥𝐷𝑥𝐵𝑦) ∧ (𝑦𝐸 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) ∧ (𝑧𝐹𝑦𝐴𝑧)) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧)))
3310, 9impbii 208 . . . . . . . . . . 11 ((𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧) ↔ (𝑥𝐵𝑦𝑦𝐴𝑧))
3433anbi2i 623 . . . . . . . . . 10 (((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧)) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)))
3532, 34bitri 274 . . . . . . . . 9 (((𝑥𝐷𝑥𝐵𝑦) ∧ (𝑦𝐸 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) ∧ (𝑧𝐹𝑦𝐴𝑧)) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)))
3611, 31, 353bitri 297 . . . . . . . 8 ((𝑥𝐵𝑦𝑦𝐴𝑧) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)))
3736imbi1i 350 . . . . . . 7 (((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) → 𝑥𝐶𝑧))
38 impexp 451 . . . . . . 7 ((((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) → 𝑥𝐶𝑧) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
39 3impexp 1357 . . . . . . 7 (((𝑥𝐷𝑦𝐸𝑧𝐹) → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ (𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
4037, 38, 393bitri 297 . . . . . 6 (((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
4140albii 1822 . . . . 5 (∀𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑧(𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
42412albii 1823 . . . 4 (∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑥𝑦𝑧(𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
43 df-ral 3069 . . . 4 (∀𝑥𝐷𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑥(𝑥𝐷 → ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
445, 42, 433bitr4i 303 . . 3 (∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑥𝐷𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
45 df-ral 3069 . . . . . 6 (∀𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑦(𝑦𝐸 → ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
46 19.21v 1942 . . . . . . . 8 (∀𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ (𝑦𝐸 → ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
4746bicomi 223 . . . . . . 7 ((𝑦𝐸 → ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
4847albii 1822 . . . . . 6 (∀𝑦(𝑦𝐸 → ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
4945, 48bitri 274 . . . . 5 (∀𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
5049bicomi 223 . . . 4 (∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
5150ralbii 3092 . . 3 (∀𝑥𝐷𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑥𝐷𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
5244, 51bitri 274 . 2 (∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑥𝐷𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
53 df-ral 3069 . . . . 5 (∀𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
5453bicomi 223 . . . 4 (∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
5554ralbii 3092 . . 3 (∀𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑦𝐸𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
5655ralbii 3092 . 2 (∀𝑥𝐷𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑥𝐷𝑦𝐸𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
571, 52, 563bitri 297 1 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝐷𝑦𝐸𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wal 1537  wcel 2106  wral 3064  cin 3886  wss 3887   class class class wbr 5074  dom cdm 5589  ran crn 5590  ccom 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600
This theorem is referenced by:  cotr2  14688
  Copyright terms: Public domain W3C validator