Proof of Theorem cotr2g
Step | Hyp | Ref
| Expression |
1 | | cotrg 6016 |
. 2
⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
2 | | nfv 1917 |
. . . . . 6
⊢
Ⅎ𝑦 𝑥 ∈ 𝐷 |
3 | | nfv 1917 |
. . . . . 6
⊢
Ⅎ𝑧 𝑥 ∈ 𝐷 |
4 | 2, 3 | 19.21-2 2202 |
. . . . 5
⊢
(∀𝑦∀𝑧(𝑥 ∈ 𝐷 → (𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) ↔ (𝑥 ∈ 𝐷 → ∀𝑦∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))))) |
5 | 4 | albii 1822 |
. . . 4
⊢
(∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐷 → (𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) ↔ ∀𝑥(𝑥 ∈ 𝐷 → ∀𝑦∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))))) |
6 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐵𝑦) |
7 | | id 22 |
. . . . . . . . . . 11
⊢ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) |
8 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑦𝐴𝑧) |
9 | 6, 7, 8 | 3jca 1127 |
. . . . . . . . . 10
⊢ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧)) |
10 | | simp2 1136 |
. . . . . . . . . 10
⊢ ((𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧) → (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) |
11 | 9, 10 | impbii 208 |
. . . . . . . . 9
⊢ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ↔ (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧)) |
12 | | cotr2g.d |
. . . . . . . . . . . 12
⊢ dom 𝐵 ⊆ 𝐷 |
13 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
14 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
15 | 13, 14 | breldm 5817 |
. . . . . . . . . . . 12
⊢ (𝑥𝐵𝑦 → 𝑥 ∈ dom 𝐵) |
16 | 12, 15 | sselid 3919 |
. . . . . . . . . . 11
⊢ (𝑥𝐵𝑦 → 𝑥 ∈ 𝐷) |
17 | 16 | pm4.71ri 561 |
. . . . . . . . . 10
⊢ (𝑥𝐵𝑦 ↔ (𝑥 ∈ 𝐷 ∧ 𝑥𝐵𝑦)) |
18 | | cotr2g.e |
. . . . . . . . . . . 12
⊢ (ran
𝐵 ∩ dom 𝐴) ⊆ 𝐸 |
19 | 13, 14 | brelrn 5851 |
. . . . . . . . . . . . 13
⊢ (𝑥𝐵𝑦 → 𝑦 ∈ ran 𝐵) |
20 | | vex 3436 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
21 | 14, 20 | breldm 5817 |
. . . . . . . . . . . . 13
⊢ (𝑦𝐴𝑧 → 𝑦 ∈ dom 𝐴) |
22 | | elin 3903 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (ran 𝐵 ∩ dom 𝐴) ↔ (𝑦 ∈ ran 𝐵 ∧ 𝑦 ∈ dom 𝐴)) |
23 | 22 | biimpri 227 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ran 𝐵 ∧ 𝑦 ∈ dom 𝐴) → 𝑦 ∈ (ran 𝐵 ∩ dom 𝐴)) |
24 | 19, 21, 23 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑦 ∈ (ran 𝐵 ∩ dom 𝐴)) |
25 | 18, 24 | sselid 3919 |
. . . . . . . . . . 11
⊢ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑦 ∈ 𝐸) |
26 | 25 | pm4.71ri 561 |
. . . . . . . . . 10
⊢ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ↔ (𝑦 ∈ 𝐸 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧))) |
27 | | cotr2g.f |
. . . . . . . . . . . 12
⊢ ran 𝐴 ⊆ 𝐹 |
28 | 14, 20 | brelrn 5851 |
. . . . . . . . . . . 12
⊢ (𝑦𝐴𝑧 → 𝑧 ∈ ran 𝐴) |
29 | 27, 28 | sselid 3919 |
. . . . . . . . . . 11
⊢ (𝑦𝐴𝑧 → 𝑧 ∈ 𝐹) |
30 | 29 | pm4.71ri 561 |
. . . . . . . . . 10
⊢ (𝑦𝐴𝑧 ↔ (𝑧 ∈ 𝐹 ∧ 𝑦𝐴𝑧)) |
31 | 17, 26, 30 | 3anbi123i 1154 |
. . . . . . . . 9
⊢ ((𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑥𝐵𝑦) ∧ (𝑦 ∈ 𝐸 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑦𝐴𝑧))) |
32 | | 3an6 1445 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐷 ∧ 𝑥𝐵𝑦) ∧ (𝑦 ∈ 𝐸 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑦𝐴𝑧)) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹) ∧ (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧))) |
33 | 10, 9 | impbii 208 |
. . . . . . . . . . 11
⊢ ((𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧) ↔ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) |
34 | 33 | anbi2i 623 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹) ∧ (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧)) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹) ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧))) |
35 | 32, 34 | bitri 274 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐷 ∧ 𝑥𝐵𝑦) ∧ (𝑦 ∈ 𝐸 ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑦𝐴𝑧)) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹) ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧))) |
36 | 11, 31, 35 | 3bitri 297 |
. . . . . . . 8
⊢ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹) ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧))) |
37 | 36 | imbi1i 350 |
. . . . . . 7
⊢ (((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹) ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) → 𝑥𝐶𝑧)) |
38 | | impexp 451 |
. . . . . . 7
⊢ ((((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹) ∧ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) → 𝑥𝐶𝑧) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹) → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) |
39 | | 3impexp 1357 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹) → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ (𝑥 ∈ 𝐷 → (𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))))) |
40 | 37, 38, 39 | 3bitri 297 |
. . . . . 6
⊢ (((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (𝑥 ∈ 𝐷 → (𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))))) |
41 | 40 | albii 1822 |
. . . . 5
⊢
(∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑧(𝑥 ∈ 𝐷 → (𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))))) |
42 | 41 | 2albii 1823 |
. . . 4
⊢
(∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐷 → (𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))))) |
43 | | df-ral 3069 |
. . . 4
⊢
(∀𝑥 ∈
𝐷 ∀𝑦∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑥(𝑥 ∈ 𝐷 → ∀𝑦∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))))) |
44 | 5, 42, 43 | 3bitr4i 303 |
. . 3
⊢
(∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑥 ∈ 𝐷 ∀𝑦∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) |
45 | | df-ral 3069 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐸 ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑦(𝑦 ∈ 𝐸 → ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) |
46 | | 19.21v 1942 |
. . . . . . . 8
⊢
(∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ (𝑦 ∈ 𝐸 → ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) |
47 | 46 | bicomi 223 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐸 → ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) |
48 | 47 | albii 1822 |
. . . . . 6
⊢
(∀𝑦(𝑦 ∈ 𝐸 → ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑦∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) |
49 | 45, 48 | bitri 274 |
. . . . 5
⊢
(∀𝑦 ∈
𝐸 ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑦∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) |
50 | 49 | bicomi 223 |
. . . 4
⊢
(∀𝑦∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑦 ∈ 𝐸 ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) |
51 | 50 | ralbii 3092 |
. . 3
⊢
(∀𝑥 ∈
𝐷 ∀𝑦∀𝑧(𝑦 ∈ 𝐸 → (𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐸 ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) |
52 | 44, 51 | bitri 274 |
. 2
⊢
(∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐸 ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) |
53 | | df-ral 3069 |
. . . . 5
⊢
(∀𝑧 ∈
𝐹 ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧))) |
54 | 53 | bicomi 223 |
. . . 4
⊢
(∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑧 ∈ 𝐹 ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
55 | 54 | ralbii 3092 |
. . 3
⊢
(∀𝑦 ∈
𝐸 ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑦 ∈ 𝐸 ∀𝑧 ∈ 𝐹 ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
56 | 55 | ralbii 3092 |
. 2
⊢
(∀𝑥 ∈
𝐷 ∀𝑦 ∈ 𝐸 ∀𝑧(𝑧 ∈ 𝐹 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐸 ∀𝑧 ∈ 𝐹 ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
57 | 1, 52, 56 | 3bitri 297 |
1
⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐸 ∀𝑧 ∈ 𝐹 ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |