MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotr2g Structured version   Visualization version   GIF version

Theorem cotr2g 14922
Description: Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr2 14923 for the main application. (Contributed by RP, 22-Mar-2020.)
Hypotheses
Ref Expression
cotr2g.d dom 𝐵𝐷
cotr2g.e (ran 𝐵 ∩ dom 𝐴) ⊆ 𝐸
cotr2g.f ran 𝐴𝐹
Assertion
Ref Expression
cotr2g ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝐷𝑦𝐸𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑦,𝐸,𝑧   𝑧,𝐹
Allowed substitution hints:   𝐸(𝑥)   𝐹(𝑥,𝑦)

Proof of Theorem cotr2g
StepHypRef Expression
1 cotrg 6108 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
2 nfv 1917 . . . . . 6 𝑦 𝑥𝐷
3 nfv 1917 . . . . . 6 𝑧 𝑥𝐷
42, 319.21-2 2202 . . . . 5 (∀𝑦𝑧(𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) ↔ (𝑥𝐷 → ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
54albii 1821 . . . 4 (∀𝑥𝑦𝑧(𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) ↔ ∀𝑥(𝑥𝐷 → ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
6 simpl 483 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐵𝑦)
7 id 22 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝑦𝐴𝑧) → (𝑥𝐵𝑦𝑦𝐴𝑧))
8 simpr 485 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑦𝐴𝑧)
96, 7, 83jca 1128 . . . . . . . . . 10 ((𝑥𝐵𝑦𝑦𝐴𝑧) → (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧))
10 simp2 1137 . . . . . . . . . 10 ((𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧) → (𝑥𝐵𝑦𝑦𝐴𝑧))
119, 10impbii 208 . . . . . . . . 9 ((𝑥𝐵𝑦𝑦𝐴𝑧) ↔ (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧))
12 cotr2g.d . . . . . . . . . . . 12 dom 𝐵𝐷
13 vex 3478 . . . . . . . . . . . . 13 𝑥 ∈ V
14 vex 3478 . . . . . . . . . . . . 13 𝑦 ∈ V
1513, 14breldm 5908 . . . . . . . . . . . 12 (𝑥𝐵𝑦𝑥 ∈ dom 𝐵)
1612, 15sselid 3980 . . . . . . . . . . 11 (𝑥𝐵𝑦𝑥𝐷)
1716pm4.71ri 561 . . . . . . . . . 10 (𝑥𝐵𝑦 ↔ (𝑥𝐷𝑥𝐵𝑦))
18 cotr2g.e . . . . . . . . . . . 12 (ran 𝐵 ∩ dom 𝐴) ⊆ 𝐸
1913, 14brelrn 5941 . . . . . . . . . . . . 13 (𝑥𝐵𝑦𝑦 ∈ ran 𝐵)
20 vex 3478 . . . . . . . . . . . . . 14 𝑧 ∈ V
2114, 20breldm 5908 . . . . . . . . . . . . 13 (𝑦𝐴𝑧𝑦 ∈ dom 𝐴)
22 elin 3964 . . . . . . . . . . . . . 14 (𝑦 ∈ (ran 𝐵 ∩ dom 𝐴) ↔ (𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴))
2322biimpri 227 . . . . . . . . . . . . 13 ((𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴) → 𝑦 ∈ (ran 𝐵 ∩ dom 𝐴))
2419, 21, 23syl2an 596 . . . . . . . . . . . 12 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑦 ∈ (ran 𝐵 ∩ dom 𝐴))
2518, 24sselid 3980 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑦𝐸)
2625pm4.71ri 561 . . . . . . . . . 10 ((𝑥𝐵𝑦𝑦𝐴𝑧) ↔ (𝑦𝐸 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)))
27 cotr2g.f . . . . . . . . . . . 12 ran 𝐴𝐹
2814, 20brelrn 5941 . . . . . . . . . . . 12 (𝑦𝐴𝑧𝑧 ∈ ran 𝐴)
2927, 28sselid 3980 . . . . . . . . . . 11 (𝑦𝐴𝑧𝑧𝐹)
3029pm4.71ri 561 . . . . . . . . . 10 (𝑦𝐴𝑧 ↔ (𝑧𝐹𝑦𝐴𝑧))
3117, 26, 303anbi123i 1155 . . . . . . . . 9 ((𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧) ↔ ((𝑥𝐷𝑥𝐵𝑦) ∧ (𝑦𝐸 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) ∧ (𝑧𝐹𝑦𝐴𝑧)))
32 3an6 1446 . . . . . . . . . 10 (((𝑥𝐷𝑥𝐵𝑦) ∧ (𝑦𝐸 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) ∧ (𝑧𝐹𝑦𝐴𝑧)) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧)))
3310, 9impbii 208 . . . . . . . . . . 11 ((𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧) ↔ (𝑥𝐵𝑦𝑦𝐴𝑧))
3433anbi2i 623 . . . . . . . . . 10 (((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧)) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)))
3532, 34bitri 274 . . . . . . . . 9 (((𝑥𝐷𝑥𝐵𝑦) ∧ (𝑦𝐸 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) ∧ (𝑧𝐹𝑦𝐴𝑧)) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)))
3611, 31, 353bitri 296 . . . . . . . 8 ((𝑥𝐵𝑦𝑦𝐴𝑧) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)))
3736imbi1i 349 . . . . . . 7 (((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) → 𝑥𝐶𝑧))
38 impexp 451 . . . . . . 7 ((((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) → 𝑥𝐶𝑧) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
39 3impexp 1358 . . . . . . 7 (((𝑥𝐷𝑦𝐸𝑧𝐹) → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ (𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
4037, 38, 393bitri 296 . . . . . 6 (((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
4140albii 1821 . . . . 5 (∀𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑧(𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
42412albii 1822 . . . 4 (∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑥𝑦𝑧(𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
43 df-ral 3062 . . . 4 (∀𝑥𝐷𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑥(𝑥𝐷 → ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
445, 42, 433bitr4i 302 . . 3 (∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑥𝐷𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
45 df-ral 3062 . . . . . 6 (∀𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑦(𝑦𝐸 → ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
46 19.21v 1942 . . . . . . . 8 (∀𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ (𝑦𝐸 → ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
4746bicomi 223 . . . . . . 7 ((𝑦𝐸 → ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
4847albii 1821 . . . . . 6 (∀𝑦(𝑦𝐸 → ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
4945, 48bitri 274 . . . . 5 (∀𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
5049bicomi 223 . . . 4 (∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
5150ralbii 3093 . . 3 (∀𝑥𝐷𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑥𝐷𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
5244, 51bitri 274 . 2 (∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑥𝐷𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
53 df-ral 3062 . . . . 5 (∀𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
5453bicomi 223 . . . 4 (∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
5554ralbii 3093 . . 3 (∀𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑦𝐸𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
5655ralbii 3093 . 2 (∀𝑥𝐷𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑥𝐷𝑦𝐸𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
571, 52, 563bitri 296 1 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝐷𝑦𝐸𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wal 1539  wcel 2106  wral 3061  cin 3947  wss 3948   class class class wbr 5148  dom cdm 5676  ran crn 5677  ccom 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687
This theorem is referenced by:  cotr2  14923
  Copyright terms: Public domain W3C validator