MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotr2g Structured version   Visualization version   GIF version

Theorem cotr2g 14615
Description: Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr2 14616 for the main application. (Contributed by RP, 22-Mar-2020.)
Hypotheses
Ref Expression
cotr2g.d dom 𝐵𝐷
cotr2g.e (ran 𝐵 ∩ dom 𝐴) ⊆ 𝐸
cotr2g.f ran 𝐴𝐹
Assertion
Ref Expression
cotr2g ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝐷𝑦𝐸𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑦,𝐸,𝑧   𝑧,𝐹
Allowed substitution hints:   𝐸(𝑥)   𝐹(𝑥,𝑦)

Proof of Theorem cotr2g
StepHypRef Expression
1 cotrg 6005 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
2 nfv 1918 . . . . . 6 𝑦 𝑥𝐷
3 nfv 1918 . . . . . 6 𝑧 𝑥𝐷
42, 319.21-2 2205 . . . . 5 (∀𝑦𝑧(𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) ↔ (𝑥𝐷 → ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
54albii 1823 . . . 4 (∀𝑥𝑦𝑧(𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))) ↔ ∀𝑥(𝑥𝐷 → ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
6 simpl 482 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐵𝑦)
7 id 22 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝑦𝐴𝑧) → (𝑥𝐵𝑦𝑦𝐴𝑧))
8 simpr 484 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑦𝐴𝑧)
96, 7, 83jca 1126 . . . . . . . . . 10 ((𝑥𝐵𝑦𝑦𝐴𝑧) → (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧))
10 simp2 1135 . . . . . . . . . 10 ((𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧) → (𝑥𝐵𝑦𝑦𝐴𝑧))
119, 10impbii 208 . . . . . . . . 9 ((𝑥𝐵𝑦𝑦𝐴𝑧) ↔ (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧))
12 cotr2g.d . . . . . . . . . . . 12 dom 𝐵𝐷
13 vex 3426 . . . . . . . . . . . . 13 𝑥 ∈ V
14 vex 3426 . . . . . . . . . . . . 13 𝑦 ∈ V
1513, 14breldm 5806 . . . . . . . . . . . 12 (𝑥𝐵𝑦𝑥 ∈ dom 𝐵)
1612, 15sselid 3915 . . . . . . . . . . 11 (𝑥𝐵𝑦𝑥𝐷)
1716pm4.71ri 560 . . . . . . . . . 10 (𝑥𝐵𝑦 ↔ (𝑥𝐷𝑥𝐵𝑦))
18 cotr2g.e . . . . . . . . . . . 12 (ran 𝐵 ∩ dom 𝐴) ⊆ 𝐸
1913, 14brelrn 5840 . . . . . . . . . . . . 13 (𝑥𝐵𝑦𝑦 ∈ ran 𝐵)
20 vex 3426 . . . . . . . . . . . . . 14 𝑧 ∈ V
2114, 20breldm 5806 . . . . . . . . . . . . 13 (𝑦𝐴𝑧𝑦 ∈ dom 𝐴)
22 elin 3899 . . . . . . . . . . . . . 14 (𝑦 ∈ (ran 𝐵 ∩ dom 𝐴) ↔ (𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴))
2322biimpri 227 . . . . . . . . . . . . 13 ((𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴) → 𝑦 ∈ (ran 𝐵 ∩ dom 𝐴))
2419, 21, 23syl2an 595 . . . . . . . . . . . 12 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑦 ∈ (ran 𝐵 ∩ dom 𝐴))
2518, 24sselid 3915 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑦𝐸)
2625pm4.71ri 560 . . . . . . . . . 10 ((𝑥𝐵𝑦𝑦𝐴𝑧) ↔ (𝑦𝐸 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)))
27 cotr2g.f . . . . . . . . . . . 12 ran 𝐴𝐹
2814, 20brelrn 5840 . . . . . . . . . . . 12 (𝑦𝐴𝑧𝑧 ∈ ran 𝐴)
2927, 28sselid 3915 . . . . . . . . . . 11 (𝑦𝐴𝑧𝑧𝐹)
3029pm4.71ri 560 . . . . . . . . . 10 (𝑦𝐴𝑧 ↔ (𝑧𝐹𝑦𝐴𝑧))
3117, 26, 303anbi123i 1153 . . . . . . . . 9 ((𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧) ↔ ((𝑥𝐷𝑥𝐵𝑦) ∧ (𝑦𝐸 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) ∧ (𝑧𝐹𝑦𝐴𝑧)))
32 3an6 1444 . . . . . . . . . 10 (((𝑥𝐷𝑥𝐵𝑦) ∧ (𝑦𝐸 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) ∧ (𝑧𝐹𝑦𝐴𝑧)) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧)))
3310, 9impbii 208 . . . . . . . . . . 11 ((𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧) ↔ (𝑥𝐵𝑦𝑦𝐴𝑧))
3433anbi2i 622 . . . . . . . . . 10 (((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧) ∧ 𝑦𝐴𝑧)) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)))
3532, 34bitri 274 . . . . . . . . 9 (((𝑥𝐷𝑥𝐵𝑦) ∧ (𝑦𝐸 ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) ∧ (𝑧𝐹𝑦𝐴𝑧)) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)))
3611, 31, 353bitri 296 . . . . . . . 8 ((𝑥𝐵𝑦𝑦𝐴𝑧) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)))
3736imbi1i 349 . . . . . . 7 (((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) → 𝑥𝐶𝑧))
38 impexp 450 . . . . . . 7 ((((𝑥𝐷𝑦𝐸𝑧𝐹) ∧ (𝑥𝐵𝑦𝑦𝐴𝑧)) → 𝑥𝐶𝑧) ↔ ((𝑥𝐷𝑦𝐸𝑧𝐹) → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
39 3impexp 1356 . . . . . . 7 (((𝑥𝐷𝑦𝐸𝑧𝐹) → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ (𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
4037, 38, 393bitri 296 . . . . . 6 (((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
4140albii 1823 . . . . 5 (∀𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑧(𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
42412albii 1824 . . . 4 (∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑥𝑦𝑧(𝑥𝐷 → (𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
43 df-ral 3068 . . . 4 (∀𝑥𝐷𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑥(𝑥𝐷 → ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))))
445, 42, 433bitr4i 302 . . 3 (∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑥𝐷𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
45 df-ral 3068 . . . . . 6 (∀𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑦(𝑦𝐸 → ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
46 19.21v 1943 . . . . . . . 8 (∀𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ (𝑦𝐸 → ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
4746bicomi 223 . . . . . . 7 ((𝑦𝐸 → ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
4847albii 1823 . . . . . 6 (∀𝑦(𝑦𝐸 → ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
4945, 48bitri 274 . . . . 5 (∀𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))))
5049bicomi 223 . . . 4 (∀𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
5150ralbii 3090 . . 3 (∀𝑥𝐷𝑦𝑧(𝑦𝐸 → (𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))) ↔ ∀𝑥𝐷𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
5244, 51bitri 274 . 2 (∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑥𝐷𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
53 df-ral 3068 . . . . 5 (∀𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)))
5453bicomi 223 . . . 4 (∀𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
5554ralbii 3090 . . 3 (∀𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑦𝐸𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
5655ralbii 3090 . 2 (∀𝑥𝐷𝑦𝐸𝑧(𝑧𝐹 → ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧)) ↔ ∀𝑥𝐷𝑦𝐸𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
571, 52, 563bitri 296 1 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝐷𝑦𝐸𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wal 1537  wcel 2108  wral 3063  cin 3882  wss 3883   class class class wbr 5070  dom cdm 5580  ran crn 5581  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591
This theorem is referenced by:  cotr2  14616
  Copyright terms: Public domain W3C validator