| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1030 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 35022. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1030.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| bnj1030.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| bnj1030.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| bnj1030.4 | ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) |
| bnj1030.5 | ⊢ (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) |
| bnj1030.6 | ⊢ (𝜁 ↔ (𝑖 ∈ 𝑛 ∧ 𝑧 ∈ (𝑓‘𝑖))) |
| bnj1030.7 | ⊢ 𝐷 = (ω ∖ {∅}) |
| bnj1030.8 | ⊢ 𝐾 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
| bnj1030.9 | ⊢ (𝜂 ↔ ((𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) |
| bnj1030.10 | ⊢ (𝜌 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜂)) |
| bnj1030.11 | ⊢ (𝜑′ ↔ [𝑗 / 𝑖]𝜑) |
| bnj1030.12 | ⊢ (𝜓′ ↔ [𝑗 / 𝑖]𝜓) |
| bnj1030.13 | ⊢ (𝜒′ ↔ [𝑗 / 𝑖]𝜒) |
| bnj1030.14 | ⊢ (𝜃′ ↔ [𝑗 / 𝑖]𝜃) |
| bnj1030.15 | ⊢ (𝜏′ ↔ [𝑗 / 𝑖]𝜏) |
| bnj1030.16 | ⊢ (𝜁′ ↔ [𝑗 / 𝑖]𝜁) |
| bnj1030.17 | ⊢ (𝜂′ ↔ [𝑗 / 𝑖]𝜂) |
| bnj1030.18 | ⊢ (𝜎 ↔ ((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′)) |
| bnj1030.19 | ⊢ (𝜑0 ↔ (𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓)) |
| Ref | Expression |
|---|---|
| bnj1030 | ⊢ ((𝜃 ∧ 𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1030.1 | . 2 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
| 2 | bnj1030.2 | . 2 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 3 | bnj1030.3 | . 2 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
| 4 | bnj1030.4 | . 2 ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) | |
| 5 | bnj1030.5 | . 2 ⊢ (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) | |
| 6 | bnj1030.6 | . 2 ⊢ (𝜁 ↔ (𝑖 ∈ 𝑛 ∧ 𝑧 ∈ (𝑓‘𝑖))) | |
| 7 | bnj1030.7 | . 2 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 8 | bnj1030.8 | . 2 ⊢ 𝐾 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
| 9 | 19.23vv 1944 | . . . . 5 ⊢ (∀𝑛∀𝑖((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) ↔ (∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) | |
| 10 | 9 | albii 1820 | . . . 4 ⊢ (∀𝑓∀𝑛∀𝑖((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) ↔ ∀𝑓(∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) |
| 11 | 19.23v 1943 | . . . 4 ⊢ (∀𝑓(∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) ↔ (∃𝑓∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) | |
| 12 | 10, 11 | bitri 275 | . . 3 ⊢ (∀𝑓∀𝑛∀𝑖((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) ↔ (∃𝑓∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) |
| 13 | bnj1030.9 | . . . . 5 ⊢ (𝜂 ↔ ((𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) | |
| 14 | 7 | bnj1071 34989 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝐷 → E Fr 𝑛) |
| 15 | 3, 14 | bnj769 34774 | . . . . . . 7 ⊢ (𝜒 → E Fr 𝑛) |
| 16 | 15 | bnj707 34767 | . . . . . 6 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → E Fr 𝑛) |
| 17 | bnj1030.10 | . . . . . . 7 ⊢ (𝜌 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜂)) | |
| 18 | bnj1030.17 | . . . . . . 7 ⊢ (𝜂′ ↔ [𝑗 / 𝑖]𝜂) | |
| 19 | bnj1030.18 | . . . . . . 7 ⊢ (𝜎 ↔ ((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′)) | |
| 20 | bnj1030.19 | . . . . . . 7 ⊢ (𝜑0 ↔ (𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓)) | |
| 21 | 2, 8, 13, 18 | bnj1123 34998 | . . . . . . . . . 10 ⊢ (𝜂′ ↔ ((𝑓 ∈ 𝐾 ∧ 𝑗 ∈ dom 𝑓) → (𝑓‘𝑗) ⊆ 𝐵)) |
| 22 | 2, 3, 5, 7, 19, 20, 21 | bnj1118 34996 | . . . . . . . . 9 ⊢ ∃𝑗((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → (𝑓‘𝑖) ⊆ 𝐵) |
| 23 | 1, 3, 5 | bnj1097 34993 | . . . . . . . . 9 ⊢ ((𝑖 = ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → (𝑓‘𝑖) ⊆ 𝐵) |
| 24 | 22, 23 | bnj1109 34798 | . . . . . . . 8 ⊢ ∃𝑗(((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0) → (𝑓‘𝑖) ⊆ 𝐵) |
| 25 | 24, 2, 3 | bnj1093 34992 | . . . . . . 7 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∀𝑖∃𝑗(𝜑0 → (𝑓‘𝑖) ⊆ 𝐵)) |
| 26 | 13, 17, 18, 19, 20, 25 | bnj1090 34991 | . . . . . 6 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∀𝑖 ∈ 𝑛 (𝜌 → 𝜂)) |
| 27 | vex 3440 | . . . . . . 7 ⊢ 𝑛 ∈ V | |
| 28 | 27, 17 | bnj110 34870 | . . . . . 6 ⊢ (( E Fr 𝑛 ∧ ∀𝑖 ∈ 𝑛 (𝜌 → 𝜂)) → ∀𝑖 ∈ 𝑛 𝜂) |
| 29 | 16, 26, 28 | syl2anc 584 | . . . . 5 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∀𝑖 ∈ 𝑛 𝜂) |
| 30 | 4, 5, 3, 6, 13, 29, 8 | bnj1121 34997 | . . . 4 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) |
| 31 | 30 | gen2 1797 | . . 3 ⊢ ∀𝑛∀𝑖((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) |
| 32 | 12, 31 | mpgbi 1799 | . 2 ⊢ (∃𝑓∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) |
| 33 | 1, 2, 3, 4, 5, 6, 7, 8, 32 | bnj1034 34982 | 1 ⊢ ((𝜃 ∧ 𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 Vcvv 3436 [wsbc 3736 ∖ cdif 3894 ⊆ wss 3897 ∅c0 4280 {csn 4573 ∪ ciun 4939 class class class wbr 5089 E cep 5513 Fr wfr 5564 dom cdm 5614 suc csuc 6308 Fn wfn 6476 ‘cfv 6481 ωcom 7796 ∧ w-bnj17 34698 predc-bnj14 34700 FrSe w-bnj15 34704 trClc-bnj18 34706 TrFow-bnj19 34708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fn 6484 df-fv 6489 df-om 7797 df-bnj17 34699 df-bnj18 34707 df-bnj19 34709 |
| This theorem is referenced by: bnj1124 35000 |
| Copyright terms: Public domain | W3C validator |