|   | Mathbox for Jonathan Ben-Naim | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1030 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 35024. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bnj1030.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | 
| bnj1030.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | 
| bnj1030.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | 
| bnj1030.4 | ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) | 
| bnj1030.5 | ⊢ (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) | 
| bnj1030.6 | ⊢ (𝜁 ↔ (𝑖 ∈ 𝑛 ∧ 𝑧 ∈ (𝑓‘𝑖))) | 
| bnj1030.7 | ⊢ 𝐷 = (ω ∖ {∅}) | 
| bnj1030.8 | ⊢ 𝐾 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | 
| bnj1030.9 | ⊢ (𝜂 ↔ ((𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) | 
| bnj1030.10 | ⊢ (𝜌 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜂)) | 
| bnj1030.11 | ⊢ (𝜑′ ↔ [𝑗 / 𝑖]𝜑) | 
| bnj1030.12 | ⊢ (𝜓′ ↔ [𝑗 / 𝑖]𝜓) | 
| bnj1030.13 | ⊢ (𝜒′ ↔ [𝑗 / 𝑖]𝜒) | 
| bnj1030.14 | ⊢ (𝜃′ ↔ [𝑗 / 𝑖]𝜃) | 
| bnj1030.15 | ⊢ (𝜏′ ↔ [𝑗 / 𝑖]𝜏) | 
| bnj1030.16 | ⊢ (𝜁′ ↔ [𝑗 / 𝑖]𝜁) | 
| bnj1030.17 | ⊢ (𝜂′ ↔ [𝑗 / 𝑖]𝜂) | 
| bnj1030.18 | ⊢ (𝜎 ↔ ((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′)) | 
| bnj1030.19 | ⊢ (𝜑0 ↔ (𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓)) | 
| Ref | Expression | 
|---|---|
| bnj1030 | ⊢ ((𝜃 ∧ 𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1030.1 | . 2 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
| 2 | bnj1030.2 | . 2 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 3 | bnj1030.3 | . 2 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
| 4 | bnj1030.4 | . 2 ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) | |
| 5 | bnj1030.5 | . 2 ⊢ (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) | |
| 6 | bnj1030.6 | . 2 ⊢ (𝜁 ↔ (𝑖 ∈ 𝑛 ∧ 𝑧 ∈ (𝑓‘𝑖))) | |
| 7 | bnj1030.7 | . 2 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 8 | bnj1030.8 | . 2 ⊢ 𝐾 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
| 9 | 19.23vv 1943 | . . . . 5 ⊢ (∀𝑛∀𝑖((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) ↔ (∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) | |
| 10 | 9 | albii 1819 | . . . 4 ⊢ (∀𝑓∀𝑛∀𝑖((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) ↔ ∀𝑓(∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) | 
| 11 | 19.23v 1942 | . . . 4 ⊢ (∀𝑓(∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) ↔ (∃𝑓∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) | |
| 12 | 10, 11 | bitri 275 | . . 3 ⊢ (∀𝑓∀𝑛∀𝑖((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) ↔ (∃𝑓∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) | 
| 13 | bnj1030.9 | . . . . 5 ⊢ (𝜂 ↔ ((𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) | |
| 14 | 7 | bnj1071 34991 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝐷 → E Fr 𝑛) | 
| 15 | 3, 14 | bnj769 34776 | . . . . . . 7 ⊢ (𝜒 → E Fr 𝑛) | 
| 16 | 15 | bnj707 34769 | . . . . . 6 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → E Fr 𝑛) | 
| 17 | bnj1030.10 | . . . . . . 7 ⊢ (𝜌 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜂)) | |
| 18 | bnj1030.17 | . . . . . . 7 ⊢ (𝜂′ ↔ [𝑗 / 𝑖]𝜂) | |
| 19 | bnj1030.18 | . . . . . . 7 ⊢ (𝜎 ↔ ((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′)) | |
| 20 | bnj1030.19 | . . . . . . 7 ⊢ (𝜑0 ↔ (𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓)) | |
| 21 | 2, 8, 13, 18 | bnj1123 35000 | . . . . . . . . . 10 ⊢ (𝜂′ ↔ ((𝑓 ∈ 𝐾 ∧ 𝑗 ∈ dom 𝑓) → (𝑓‘𝑗) ⊆ 𝐵)) | 
| 22 | 2, 3, 5, 7, 19, 20, 21 | bnj1118 34998 | . . . . . . . . 9 ⊢ ∃𝑗((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → (𝑓‘𝑖) ⊆ 𝐵) | 
| 23 | 1, 3, 5 | bnj1097 34995 | . . . . . . . . 9 ⊢ ((𝑖 = ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → (𝑓‘𝑖) ⊆ 𝐵) | 
| 24 | 22, 23 | bnj1109 34800 | . . . . . . . 8 ⊢ ∃𝑗(((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0) → (𝑓‘𝑖) ⊆ 𝐵) | 
| 25 | 24, 2, 3 | bnj1093 34994 | . . . . . . 7 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∀𝑖∃𝑗(𝜑0 → (𝑓‘𝑖) ⊆ 𝐵)) | 
| 26 | 13, 17, 18, 19, 20, 25 | bnj1090 34993 | . . . . . 6 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∀𝑖 ∈ 𝑛 (𝜌 → 𝜂)) | 
| 27 | vex 3484 | . . . . . . 7 ⊢ 𝑛 ∈ V | |
| 28 | 27, 17 | bnj110 34872 | . . . . . 6 ⊢ (( E Fr 𝑛 ∧ ∀𝑖 ∈ 𝑛 (𝜌 → 𝜂)) → ∀𝑖 ∈ 𝑛 𝜂) | 
| 29 | 16, 26, 28 | syl2anc 584 | . . . . 5 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∀𝑖 ∈ 𝑛 𝜂) | 
| 30 | 4, 5, 3, 6, 13, 29, 8 | bnj1121 34999 | . . . 4 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) | 
| 31 | 30 | gen2 1796 | . . 3 ⊢ ∀𝑛∀𝑖((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) | 
| 32 | 12, 31 | mpgbi 1798 | . 2 ⊢ (∃𝑓∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) | 
| 33 | 1, 2, 3, 4, 5, 6, 7, 8, 32 | bnj1034 34984 | 1 ⊢ ((𝜃 ∧ 𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2714 ∀wral 3061 ∃wrex 3070 Vcvv 3480 [wsbc 3788 ∖ cdif 3948 ⊆ wss 3951 ∅c0 4333 {csn 4626 ∪ ciun 4991 class class class wbr 5143 E cep 5583 Fr wfr 5634 dom cdm 5685 suc csuc 6386 Fn wfn 6556 ‘cfv 6561 ωcom 7887 ∧ w-bnj17 34700 predc-bnj14 34702 FrSe w-bnj15 34706 trClc-bnj18 34708 TrFow-bnj19 34710 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fn 6564 df-fv 6569 df-om 7888 df-bnj17 34701 df-bnj18 34709 df-bnj19 34711 | 
| This theorem is referenced by: bnj1124 35002 | 
| Copyright terms: Public domain | W3C validator |