Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1030 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 32890. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1030.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
bnj1030.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj1030.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj1030.4 | ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) |
bnj1030.5 | ⊢ (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) |
bnj1030.6 | ⊢ (𝜁 ↔ (𝑖 ∈ 𝑛 ∧ 𝑧 ∈ (𝑓‘𝑖))) |
bnj1030.7 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj1030.8 | ⊢ 𝐾 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
bnj1030.9 | ⊢ (𝜂 ↔ ((𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) |
bnj1030.10 | ⊢ (𝜌 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜂)) |
bnj1030.11 | ⊢ (𝜑′ ↔ [𝑗 / 𝑖]𝜑) |
bnj1030.12 | ⊢ (𝜓′ ↔ [𝑗 / 𝑖]𝜓) |
bnj1030.13 | ⊢ (𝜒′ ↔ [𝑗 / 𝑖]𝜒) |
bnj1030.14 | ⊢ (𝜃′ ↔ [𝑗 / 𝑖]𝜃) |
bnj1030.15 | ⊢ (𝜏′ ↔ [𝑗 / 𝑖]𝜏) |
bnj1030.16 | ⊢ (𝜁′ ↔ [𝑗 / 𝑖]𝜁) |
bnj1030.17 | ⊢ (𝜂′ ↔ [𝑗 / 𝑖]𝜂) |
bnj1030.18 | ⊢ (𝜎 ↔ ((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′)) |
bnj1030.19 | ⊢ (𝜑0 ↔ (𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓)) |
Ref | Expression |
---|---|
bnj1030 | ⊢ ((𝜃 ∧ 𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1030.1 | . 2 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
2 | bnj1030.2 | . 2 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
3 | bnj1030.3 | . 2 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
4 | bnj1030.4 | . 2 ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) | |
5 | bnj1030.5 | . 2 ⊢ (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) | |
6 | bnj1030.6 | . 2 ⊢ (𝜁 ↔ (𝑖 ∈ 𝑛 ∧ 𝑧 ∈ (𝑓‘𝑖))) | |
7 | bnj1030.7 | . 2 ⊢ 𝐷 = (ω ∖ {∅}) | |
8 | bnj1030.8 | . 2 ⊢ 𝐾 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
9 | 19.23vv 1947 | . . . . 5 ⊢ (∀𝑛∀𝑖((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) ↔ (∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) | |
10 | 9 | albii 1823 | . . . 4 ⊢ (∀𝑓∀𝑛∀𝑖((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) ↔ ∀𝑓(∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) |
11 | 19.23v 1946 | . . . 4 ⊢ (∀𝑓(∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) ↔ (∃𝑓∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) | |
12 | 10, 11 | bitri 274 | . . 3 ⊢ (∀𝑓∀𝑛∀𝑖((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) ↔ (∃𝑓∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) |
13 | bnj1030.9 | . . . . 5 ⊢ (𝜂 ↔ ((𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) | |
14 | 7 | bnj1071 32857 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝐷 → E Fr 𝑛) |
15 | 3, 14 | bnj769 32642 | . . . . . . 7 ⊢ (𝜒 → E Fr 𝑛) |
16 | 15 | bnj707 32635 | . . . . . 6 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → E Fr 𝑛) |
17 | bnj1030.10 | . . . . . . 7 ⊢ (𝜌 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜂)) | |
18 | bnj1030.17 | . . . . . . 7 ⊢ (𝜂′ ↔ [𝑗 / 𝑖]𝜂) | |
19 | bnj1030.18 | . . . . . . 7 ⊢ (𝜎 ↔ ((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′)) | |
20 | bnj1030.19 | . . . . . . 7 ⊢ (𝜑0 ↔ (𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓)) | |
21 | 2, 8, 13, 18 | bnj1123 32866 | . . . . . . . . . 10 ⊢ (𝜂′ ↔ ((𝑓 ∈ 𝐾 ∧ 𝑗 ∈ dom 𝑓) → (𝑓‘𝑗) ⊆ 𝐵)) |
22 | 2, 3, 5, 7, 19, 20, 21 | bnj1118 32864 | . . . . . . . . 9 ⊢ ∃𝑗((𝑖 ≠ ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → (𝑓‘𝑖) ⊆ 𝐵) |
23 | 1, 3, 5 | bnj1097 32861 | . . . . . . . . 9 ⊢ ((𝑖 = ∅ ∧ ((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0)) → (𝑓‘𝑖) ⊆ 𝐵) |
24 | 22, 23 | bnj1109 32666 | . . . . . . . 8 ⊢ ∃𝑗(((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0) → (𝑓‘𝑖) ⊆ 𝐵) |
25 | 24, 2, 3 | bnj1093 32860 | . . . . . . 7 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∀𝑖∃𝑗(𝜑0 → (𝑓‘𝑖) ⊆ 𝐵)) |
26 | 13, 17, 18, 19, 20, 25 | bnj1090 32859 | . . . . . 6 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∀𝑖 ∈ 𝑛 (𝜌 → 𝜂)) |
27 | vex 3426 | . . . . . . 7 ⊢ 𝑛 ∈ V | |
28 | 27, 17 | bnj110 32738 | . . . . . 6 ⊢ (( E Fr 𝑛 ∧ ∀𝑖 ∈ 𝑛 (𝜌 → 𝜂)) → ∀𝑖 ∈ 𝑛 𝜂) |
29 | 16, 26, 28 | syl2anc 583 | . . . . 5 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∀𝑖 ∈ 𝑛 𝜂) |
30 | 4, 5, 3, 6, 13, 29, 8 | bnj1121 32865 | . . . 4 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) |
31 | 30 | gen2 1800 | . . 3 ⊢ ∀𝑛∀𝑖((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) |
32 | 12, 31 | mpgbi 1802 | . 2 ⊢ (∃𝑓∃𝑛∃𝑖(𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵) |
33 | 1, 2, 3, 4, 5, 6, 7, 8, 32 | bnj1034 32850 | 1 ⊢ ((𝜃 ∧ 𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 Vcvv 3422 [wsbc 3711 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 {csn 4558 ∪ ciun 4921 class class class wbr 5070 E cep 5485 Fr wfr 5532 dom cdm 5580 suc csuc 6253 Fn wfn 6413 ‘cfv 6418 ωcom 7687 ∧ w-bnj17 32565 predc-bnj14 32567 FrSe w-bnj15 32571 trClc-bnj18 32573 TrFow-bnj19 32575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fn 6421 df-fv 6426 df-om 7688 df-bnj17 32566 df-bnj18 32574 df-bnj19 32576 |
This theorem is referenced by: bnj1124 32868 |
Copyright terms: Public domain | W3C validator |