MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrelrel Structured version   Visualization version   GIF version

Theorem ssrelrel 5695
Description: A subclass relationship determined by ordered triples. Use relrelss 6165 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssrelrel (𝐴 ⊆ ((V × V) × V) → (𝐴𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem ssrelrel
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssel 3910 . . . 4 (𝐴𝐵 → (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵))
21alrimiv 1931 . . 3 (𝐴𝐵 → ∀𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵))
32alrimivv 1932 . 2 (𝐴𝐵 → ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵))
4 elvvv 5653 . . . . . . . 8 (𝑤 ∈ ((V × V) × V) ↔ ∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
5 eleq1 2826 . . . . . . . . . . . . . 14 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴))
6 eleq1 2826 . . . . . . . . . . . . . 14 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐵 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵))
75, 6imbi12d 344 . . . . . . . . . . . . 13 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → ((𝑤𝐴𝑤𝐵) ↔ (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
87biimprcd 249 . . . . . . . . . . . 12 ((⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
98alimi 1815 . . . . . . . . . . 11 (∀𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → ∀𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
10 19.23v 1946 . . . . . . . . . . 11 (∀𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)) ↔ (∃𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
119, 10sylib 217 . . . . . . . . . 10 (∀𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (∃𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
12112alimi 1816 . . . . . . . . 9 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → ∀𝑥𝑦(∃𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
13 19.23vv 1947 . . . . . . . . 9 (∀𝑥𝑦(∃𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)) ↔ (∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
1412, 13sylib 217 . . . . . . . 8 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
154, 14syl5bi 241 . . . . . . 7 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (𝑤 ∈ ((V × V) × V) → (𝑤𝐴𝑤𝐵)))
1615com23 86 . . . . . 6 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (𝑤𝐴 → (𝑤 ∈ ((V × V) × V) → 𝑤𝐵)))
1716a2d 29 . . . . 5 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → ((𝑤𝐴𝑤 ∈ ((V × V) × V)) → (𝑤𝐴𝑤𝐵)))
1817alimdv 1920 . . . 4 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (∀𝑤(𝑤𝐴𝑤 ∈ ((V × V) × V)) → ∀𝑤(𝑤𝐴𝑤𝐵)))
19 dfss2 3903 . . . 4 (𝐴 ⊆ ((V × V) × V) ↔ ∀𝑤(𝑤𝐴𝑤 ∈ ((V × V) × V)))
20 dfss2 3903 . . . 4 (𝐴𝐵 ↔ ∀𝑤(𝑤𝐴𝑤𝐵))
2118, 19, 203imtr4g 295 . . 3 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (𝐴 ⊆ ((V × V) × V) → 𝐴𝐵))
2221com12 32 . 2 (𝐴 ⊆ ((V × V) × V) → (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → 𝐴𝐵))
233, 22impbid2 225 1 (𝐴 ⊆ ((V × V) × V) → (𝐴𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  wss 3883  cop 4564   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-xp 5586
This theorem is referenced by:  eqrelrel  5696
  Copyright terms: Public domain W3C validator