MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrelrel Structured version   Visualization version   GIF version

Theorem ssrelrel 5663
Description: A subclass relationship determined by ordered triples. Use relrelss 6118 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssrelrel (𝐴 ⊆ ((V × V) × V) → (𝐴𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem ssrelrel
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssel 3960 . . . 4 (𝐴𝐵 → (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵))
21alrimiv 1924 . . 3 (𝐴𝐵 → ∀𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵))
32alrimivv 1925 . 2 (𝐴𝐵 → ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵))
4 elvvv 5621 . . . . . . . 8 (𝑤 ∈ ((V × V) × V) ↔ ∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
5 eleq1 2900 . . . . . . . . . . . . . 14 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴))
6 eleq1 2900 . . . . . . . . . . . . . 14 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐵 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵))
75, 6imbi12d 347 . . . . . . . . . . . . 13 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → ((𝑤𝐴𝑤𝐵) ↔ (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
87biimprcd 252 . . . . . . . . . . . 12 ((⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
98alimi 1808 . . . . . . . . . . 11 (∀𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → ∀𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
10 19.23v 1939 . . . . . . . . . . 11 (∀𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)) ↔ (∃𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
119, 10sylib 220 . . . . . . . . . 10 (∀𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (∃𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
12112alimi 1809 . . . . . . . . 9 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → ∀𝑥𝑦(∃𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
13 19.23vv 1940 . . . . . . . . 9 (∀𝑥𝑦(∃𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)) ↔ (∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
1412, 13sylib 220 . . . . . . . 8 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤𝐴𝑤𝐵)))
154, 14syl5bi 244 . . . . . . 7 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (𝑤 ∈ ((V × V) × V) → (𝑤𝐴𝑤𝐵)))
1615com23 86 . . . . . 6 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (𝑤𝐴 → (𝑤 ∈ ((V × V) × V) → 𝑤𝐵)))
1716a2d 29 . . . . 5 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → ((𝑤𝐴𝑤 ∈ ((V × V) × V)) → (𝑤𝐴𝑤𝐵)))
1817alimdv 1913 . . . 4 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (∀𝑤(𝑤𝐴𝑤 ∈ ((V × V) × V)) → ∀𝑤(𝑤𝐴𝑤𝐵)))
19 dfss2 3954 . . . 4 (𝐴 ⊆ ((V × V) × V) ↔ ∀𝑤(𝑤𝐴𝑤 ∈ ((V × V) × V)))
20 dfss2 3954 . . . 4 (𝐴𝐵 ↔ ∀𝑤(𝑤𝐴𝑤𝐵))
2118, 19, 203imtr4g 298 . . 3 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → (𝐴 ⊆ ((V × V) × V) → 𝐴𝐵))
2221com12 32 . 2 (𝐴 ⊆ ((V × V) × V) → (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) → 𝐴𝐵))
233, 22impbid2 228 1 (𝐴 ⊆ ((V × V) × V) → (𝐴𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wal 1531   = wceq 1533  wex 1776  wcel 2110  Vcvv 3494  wss 3935  cop 4566   × cxp 5547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-opab 5121  df-xp 5555
This theorem is referenced by:  eqrelrel  5664
  Copyright terms: Public domain W3C validator