Step | Hyp | Ref
| Expression |
1 | | ssel 3910 |
. . 3
⊢ (𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
2 | 1 | alrimivv 1932 |
. 2
⊢ (𝐴 ⊆ 𝐵 → ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
3 | | df-rel 5587 |
. . . . . . 7
⊢ (Rel
𝐴 ↔ 𝐴 ⊆ (V × V)) |
4 | | dfss2 3903 |
. . . . . . 7
⊢ (𝐴 ⊆ (V × V) ↔
∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ (V × V))) |
5 | 3, 4 | sylbb 218 |
. . . . . 6
⊢ (Rel
𝐴 → ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ (V × V))) |
6 | | df-xp 5586 |
. . . . . . . . . 10
⊢ (V
× V) = {〈𝑥,
𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
7 | | df-opab 5133 |
. . . . . . . . . 10
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} |
8 | 6, 7 | eqtri 2766 |
. . . . . . . . 9
⊢ (V
× V) = {𝑧 ∣
∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} |
9 | 8 | abeq2i 2874 |
. . . . . . . 8
⊢ (𝑧 ∈ (V × V) ↔
∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) |
10 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑧 = 〈𝑥, 𝑦〉) |
11 | 10 | 2eximi 1839 |
. . . . . . . 8
⊢
(∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) |
12 | 9, 11 | sylbi 216 |
. . . . . . 7
⊢ (𝑧 ∈ (V × V) →
∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) |
13 | 12 | imim2i 16 |
. . . . . 6
⊢ ((𝑧 ∈ 𝐴 → 𝑧 ∈ (V × V)) → (𝑧 ∈ 𝐴 → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉)) |
14 | 5, 13 | sylg 1826 |
. . . . 5
⊢ (Rel
𝐴 → ∀𝑧(𝑧 ∈ 𝐴 → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉)) |
15 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
16 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝐵 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
17 | 15, 16 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) |
18 | 17 | biimprcd 249 |
. . . . . . . . . 10
⊢
((〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) → (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵))) |
19 | 18 | 2alimi 1816 |
. . . . . . . . 9
⊢
(∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) → ∀𝑥∀𝑦(𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵))) |
20 | | 19.23vv 1947 |
. . . . . . . . 9
⊢
(∀𝑥∀𝑦(𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵)) ↔ (∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵))) |
21 | 19, 20 | sylib 217 |
. . . . . . . 8
⊢
(∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) → (∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵))) |
22 | 21 | com23 86 |
. . . . . . 7
⊢
(∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) → (𝑧 ∈ 𝐴 → (∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝐵))) |
23 | 22 | a2d 29 |
. . . . . 6
⊢
(∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) → ((𝑧 ∈ 𝐴 → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵))) |
24 | 23 | alimdv 1920 |
. . . . 5
⊢
(∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) → (∀𝑧(𝑧 ∈ 𝐴 → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) → ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵))) |
25 | 14, 24 | syl5 34 |
. . . 4
⊢
(∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) → (Rel 𝐴 → ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵))) |
26 | | dfss2 3903 |
. . . 4
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵)) |
27 | 25, 26 | syl6ibr 251 |
. . 3
⊢
(∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) → (Rel 𝐴 → 𝐴 ⊆ 𝐵)) |
28 | 27 | com12 32 |
. 2
⊢ (Rel
𝐴 → (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) → 𝐴 ⊆ 𝐵)) |
29 | 2, 28 | impbid2 225 |
1
⊢ (Rel
𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) |