MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrel Structured version   Visualization version   GIF version

Theorem ssrel 5794
Description: A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Remove dependency on ax-sep 5301, ax-nul 5311, ax-pr 5437. (Revised by KP, 25-Oct-2021.) Remove dependency on ax-12 2174. (Revised by SN, 11-Dec-2024.)
Assertion
Ref Expression
ssrel (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem ssrel
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssel 3988 . . 3 (𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
21alrimivv 1925 . 2 (𝐴𝐵 → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
3 df-rel 5695 . . . . . . 7 (Rel 𝐴𝐴 ⊆ (V × V))
4 df-ss 3979 . . . . . . 7 (𝐴 ⊆ (V × V) ↔ ∀𝑧(𝑧𝐴𝑧 ∈ (V × V)))
53, 4sylbb 219 . . . . . 6 (Rel 𝐴 → ∀𝑧(𝑧𝐴𝑧 ∈ (V × V)))
6 elopabw 5535 . . . . . . . . . 10 (𝑧 ∈ V → (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))))
76elv 3482 . . . . . . . . 9 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
8 simpl 482 . . . . . . . . . 10 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑧 = ⟨𝑥, 𝑦⟩)
982eximi 1832 . . . . . . . . 9 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩)
107, 9sylbi 217 . . . . . . . 8 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩)
11 df-xp 5694 . . . . . . . 8 (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
1210, 11eleq2s 2856 . . . . . . 7 (𝑧 ∈ (V × V) → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩)
1312imim2i 16 . . . . . 6 ((𝑧𝐴𝑧 ∈ (V × V)) → (𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩))
145, 13sylg 1819 . . . . 5 (Rel 𝐴 → ∀𝑧(𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩))
15 eleq1 2826 . . . . . . . . . . . 12 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
16 eleq1 2826 . . . . . . . . . . . 12 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐵 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
1715, 16imbi12d 344 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝑧𝐴𝑧𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
1817biimprcd 250 . . . . . . . . . 10 ((⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)))
19182alimi 1808 . . . . . . . . 9 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → ∀𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)))
20 19.23vv 1940 . . . . . . . . 9 (∀𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)) ↔ (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)))
2119, 20sylib 218 . . . . . . . 8 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)))
2221com23 86 . . . . . . 7 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (𝑧𝐴 → (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧𝐵)))
2322a2d 29 . . . . . 6 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → ((𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩) → (𝑧𝐴𝑧𝐵)))
2423alimdv 1913 . . . . 5 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (∀𝑧(𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩) → ∀𝑧(𝑧𝐴𝑧𝐵)))
2514, 24syl5 34 . . . 4 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (Rel 𝐴 → ∀𝑧(𝑧𝐴𝑧𝐵)))
26 df-ss 3979 . . . 4 (𝐴𝐵 ↔ ∀𝑧(𝑧𝐴𝑧𝐵))
2725, 26imbitrrdi 252 . . 3 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (Rel 𝐴𝐴𝐵))
2827com12 32 . 2 (Rel 𝐴 → (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → 𝐴𝐵))
292, 28impbid2 226 1 (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1534   = wceq 1536  wex 1775  wcel 2105  Vcvv 3477  wss 3962  cop 4636  {copab 5209   × cxp 5686  Rel wrel 5693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1539  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-v 3479  df-ss 3979  df-opab 5210  df-xp 5694  df-rel 5695
This theorem is referenced by:  eqrel  5796  ssrel3  5798  relssi  5799  relssdv  5800  cotrgOLDOLD  6131  cnvsymOLDOLD  6136  intasym  6137  intirr  6140  codir  6142  qfto  6143  dfpo2  6317  ssttrcl  9752  ttrclss  9757  dfso2  35734  dffun10  35895  imagesset  35934  undmrnresiss  43593  cnvssco  43595  joindm2  48764  meetdm2  48766
  Copyright terms: Public domain W3C validator