| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ssel 3977 | . . 3
⊢ (𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | 
| 2 | 1 | alrimivv 1928 | . 2
⊢ (𝐴 ⊆ 𝐵 → ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | 
| 3 |  | df-rel 5692 | . . . . . . 7
⊢ (Rel
𝐴 ↔ 𝐴 ⊆ (V × V)) | 
| 4 |  | df-ss 3968 | . . . . . . 7
⊢ (𝐴 ⊆ (V × V) ↔
∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ (V × V))) | 
| 5 | 3, 4 | sylbb 219 | . . . . . 6
⊢ (Rel
𝐴 → ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ (V × V))) | 
| 6 |  | elopabw 5531 | . . . . . . . . . 10
⊢ (𝑧 ∈ V → (𝑧 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))) | 
| 7 | 6 | elv 3485 | . . . . . . . . 9
⊢ (𝑧 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) | 
| 8 |  | simpl 482 | . . . . . . . . . 10
⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑧 = 〈𝑥, 𝑦〉) | 
| 9 | 8 | 2eximi 1836 | . . . . . . . . 9
⊢
(∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) | 
| 10 | 7, 9 | sylbi 217 | . . . . . . . 8
⊢ (𝑧 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) | 
| 11 |  | df-xp 5691 | . . . . . . . 8
⊢ (V
× V) = {〈𝑥,
𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | 
| 12 | 10, 11 | eleq2s 2859 | . . . . . . 7
⊢ (𝑧 ∈ (V × V) →
∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) | 
| 13 | 12 | imim2i 16 | . . . . . 6
⊢ ((𝑧 ∈ 𝐴 → 𝑧 ∈ (V × V)) → (𝑧 ∈ 𝐴 → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉)) | 
| 14 | 5, 13 | sylg 1823 | . . . . 5
⊢ (Rel
𝐴 → ∀𝑧(𝑧 ∈ 𝐴 → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉)) | 
| 15 |  | eleq1 2829 | . . . . . . . . . . . 12
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴)) | 
| 16 |  | eleq1 2829 | . . . . . . . . . . . 12
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝐵 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) | 
| 17 | 15, 16 | imbi12d 344 | . . . . . . . . . . 11
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) | 
| 18 | 17 | biimprcd 250 | . . . . . . . . . 10
⊢
((〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) → (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵))) | 
| 19 | 18 | 2alimi 1812 | . . . . . . . . 9
⊢
(∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) → ∀𝑥∀𝑦(𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵))) | 
| 20 |  | 19.23vv 1943 | . . . . . . . . 9
⊢
(∀𝑥∀𝑦(𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵)) ↔ (∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵))) | 
| 21 | 19, 20 | sylib 218 | . . . . . . . 8
⊢
(∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) → (∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵))) | 
| 22 | 21 | com23 86 | . . . . . . 7
⊢
(∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) → (𝑧 ∈ 𝐴 → (∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ 𝐵))) | 
| 23 | 22 | a2d 29 | . . . . . 6
⊢
(∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) → ((𝑧 ∈ 𝐴 → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵))) | 
| 24 | 23 | alimdv 1916 | . . . . 5
⊢
(∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) → (∀𝑧(𝑧 ∈ 𝐴 → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) → ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵))) | 
| 25 | 14, 24 | syl5 34 | . . . 4
⊢
(∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) → (Rel 𝐴 → ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵))) | 
| 26 |  | df-ss 3968 | . . . 4
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵)) | 
| 27 | 25, 26 | imbitrrdi 252 | . . 3
⊢
(∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) → (Rel 𝐴 → 𝐴 ⊆ 𝐵)) | 
| 28 | 27 | com12 32 | . 2
⊢ (Rel
𝐴 → (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) → 𝐴 ⊆ 𝐵)) | 
| 29 | 2, 28 | impbid2 226 | 1
⊢ (Rel
𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) |