MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrel Structured version   Visualization version   GIF version

Theorem ssrel 5806
Description: A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Remove dependency on ax-sep 5317, ax-nul 5324, ax-pr 5447. (Revised by KP, 25-Oct-2021.) Remove dependency on ax-12 2178. (Revised by SN, 11-Dec-2024.)
Assertion
Ref Expression
ssrel (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem ssrel
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssel 4002 . . 3 (𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
21alrimivv 1927 . 2 (𝐴𝐵 → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
3 df-rel 5707 . . . . . . 7 (Rel 𝐴𝐴 ⊆ (V × V))
4 df-ss 3993 . . . . . . 7 (𝐴 ⊆ (V × V) ↔ ∀𝑧(𝑧𝐴𝑧 ∈ (V × V)))
53, 4sylbb 219 . . . . . 6 (Rel 𝐴 → ∀𝑧(𝑧𝐴𝑧 ∈ (V × V)))
6 elopabw 5545 . . . . . . . . . 10 (𝑧 ∈ V → (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))))
76elv 3493 . . . . . . . . 9 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
8 simpl 482 . . . . . . . . . 10 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑧 = ⟨𝑥, 𝑦⟩)
982eximi 1834 . . . . . . . . 9 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩)
107, 9sylbi 217 . . . . . . . 8 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩)
11 df-xp 5706 . . . . . . . 8 (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
1210, 11eleq2s 2862 . . . . . . 7 (𝑧 ∈ (V × V) → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩)
1312imim2i 16 . . . . . 6 ((𝑧𝐴𝑧 ∈ (V × V)) → (𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩))
145, 13sylg 1821 . . . . 5 (Rel 𝐴 → ∀𝑧(𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩))
15 eleq1 2832 . . . . . . . . . . . 12 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
16 eleq1 2832 . . . . . . . . . . . 12 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐵 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
1715, 16imbi12d 344 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝑧𝐴𝑧𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
1817biimprcd 250 . . . . . . . . . 10 ((⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)))
19182alimi 1810 . . . . . . . . 9 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → ∀𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)))
20 19.23vv 1942 . . . . . . . . 9 (∀𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)) ↔ (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)))
2119, 20sylib 218 . . . . . . . 8 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)))
2221com23 86 . . . . . . 7 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (𝑧𝐴 → (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧𝐵)))
2322a2d 29 . . . . . 6 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → ((𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩) → (𝑧𝐴𝑧𝐵)))
2423alimdv 1915 . . . . 5 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (∀𝑧(𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩) → ∀𝑧(𝑧𝐴𝑧𝐵)))
2514, 24syl5 34 . . . 4 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (Rel 𝐴 → ∀𝑧(𝑧𝐴𝑧𝐵)))
26 df-ss 3993 . . . 4 (𝐴𝐵 ↔ ∀𝑧(𝑧𝐴𝑧𝐵))
2725, 26imbitrrdi 252 . . 3 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (Rel 𝐴𝐴𝐵))
2827com12 32 . 2 (Rel 𝐴 → (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → 𝐴𝐵))
292, 28impbid2 226 1 (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  wss 3976  cop 4654  {copab 5228   × cxp 5698  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-opab 5229  df-xp 5706  df-rel 5707
This theorem is referenced by:  eqrel  5808  ssrel3  5810  relssi  5811  relssdv  5812  cotrgOLDOLD  6141  cnvsymOLDOLD  6146  intasym  6147  intirr  6150  codir  6152  qfto  6153  dfpo2  6327  ssttrcl  9784  ttrclss  9789  dfso2  35717  dffun10  35878  imagesset  35917  undmrnresiss  43566  cnvssco  43568  joindm2  48648  meetdm2  48650
  Copyright terms: Public domain W3C validator