MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raliunxp Structured version   Visualization version   GIF version

Theorem raliunxp 5842
Description: Write a double restricted quantification as one universal quantifier. In this version of ralxp 5844, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
ralxp.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
raliunxp (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝐵(𝑦)

Proof of Theorem raliunxp
StepHypRef Expression
1 eliunxp 5840 . . . . . 6 (𝑥 𝑦𝐴 ({𝑦} × 𝐵) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
21imbi1i 348 . . . . 5 ((𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑) ↔ (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
3 19.23vv 1938 . . . . 5 (∀𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
42, 3bitr4i 277 . . . 4 ((𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑) ↔ ∀𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
54albii 1813 . . 3 (∀𝑥(𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑) ↔ ∀𝑥𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
6 alrot3 2149 . . . 4 (∀𝑥𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ∀𝑦𝑧𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
7 impexp 449 . . . . . . 7 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑦𝐴𝑧𝐵) → 𝜑)))
87albii 1813 . . . . . 6 (∀𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ∀𝑥(𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑦𝐴𝑧𝐵) → 𝜑)))
9 opex 5466 . . . . . . 7 𝑦, 𝑧⟩ ∈ V
10 ralxp.1 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
1110imbi2d 339 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (((𝑦𝐴𝑧𝐵) → 𝜑) ↔ ((𝑦𝐴𝑧𝐵) → 𝜓)))
129, 11ceqsalv 3500 . . . . . 6 (∀𝑥(𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑦𝐴𝑧𝐵) → 𝜑)) ↔ ((𝑦𝐴𝑧𝐵) → 𝜓))
138, 12bitri 274 . . . . 5 (∀𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ((𝑦𝐴𝑧𝐵) → 𝜓))
14132albii 1814 . . . 4 (∀𝑦𝑧𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ∀𝑦𝑧((𝑦𝐴𝑧𝐵) → 𝜓))
156, 14bitri 274 . . 3 (∀𝑥𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ∀𝑦𝑧((𝑦𝐴𝑧𝐵) → 𝜓))
165, 15bitri 274 . 2 (∀𝑥(𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑) ↔ ∀𝑦𝑧((𝑦𝐴𝑧𝐵) → 𝜓))
17 df-ral 3051 . 2 (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑥(𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑))
18 r2al 3184 . 2 (∀𝑦𝐴𝑧𝐵 𝜓 ↔ ∀𝑦𝑧((𝑦𝐴𝑧𝐵) → 𝜓))
1916, 17, 183bitr4i 302 1 (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1531   = wceq 1533  wex 1773  wcel 2098  wral 3050  {csn 4630  cop 4636   ciun 4997   × cxp 5676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-iun 4999  df-opab 5212  df-xp 5684  df-rel 5685
This theorem is referenced by:  rexiunxp  5843  ralxp  5844  fmpox  8072  ovmptss  8098  filnetlem4  35996
  Copyright terms: Public domain W3C validator