MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raliunxp Structured version   Visualization version   GIF version

Theorem raliunxp 5674
Description: Write a double restricted quantification as one universal quantifier. In this version of ralxp 5676, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
ralxp.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
raliunxp (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝐵(𝑦)

Proof of Theorem raliunxp
StepHypRef Expression
1 eliunxp 5672 . . . . . 6 (𝑥 𝑦𝐴 ({𝑦} × 𝐵) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
21imbi1i 353 . . . . 5 ((𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑) ↔ (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
3 19.23vv 1944 . . . . 5 (∀𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
42, 3bitr4i 281 . . . 4 ((𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑) ↔ ∀𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
54albii 1821 . . 3 (∀𝑥(𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑) ↔ ∀𝑥𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
6 alrot3 2161 . . . 4 (∀𝑥𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ∀𝑦𝑧𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
7 impexp 454 . . . . . . 7 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑦𝐴𝑧𝐵) → 𝜑)))
87albii 1821 . . . . . 6 (∀𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ∀𝑥(𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑦𝐴𝑧𝐵) → 𝜑)))
9 opex 5321 . . . . . . 7 𝑦, 𝑧⟩ ∈ V
10 ralxp.1 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
1110imbi2d 344 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (((𝑦𝐴𝑧𝐵) → 𝜑) ↔ ((𝑦𝐴𝑧𝐵) → 𝜓)))
129, 11ceqsalv 3479 . . . . . 6 (∀𝑥(𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑦𝐴𝑧𝐵) → 𝜑)) ↔ ((𝑦𝐴𝑧𝐵) → 𝜓))
138, 12bitri 278 . . . . 5 (∀𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ((𝑦𝐴𝑧𝐵) → 𝜓))
14132albii 1822 . . . 4 (∀𝑦𝑧𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ∀𝑦𝑧((𝑦𝐴𝑧𝐵) → 𝜓))
156, 14bitri 278 . . 3 (∀𝑥𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ∀𝑦𝑧((𝑦𝐴𝑧𝐵) → 𝜓))
165, 15bitri 278 . 2 (∀𝑥(𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑) ↔ ∀𝑦𝑧((𝑦𝐴𝑧𝐵) → 𝜓))
17 df-ral 3111 . 2 (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑥(𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑))
18 r2al 3166 . 2 (∀𝑦𝐴𝑧𝐵 𝜓 ↔ ∀𝑦𝑧((𝑦𝐴𝑧𝐵) → 𝜓))
1916, 17, 183bitr4i 306 1 (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wex 1781  wcel 2111  wral 3106  {csn 4525  cop 4531   ciun 4881   × cxp 5517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-iun 4883  df-opab 5093  df-xp 5525  df-rel 5526
This theorem is referenced by:  rexiunxp  5675  ralxp  5676  fmpox  7747  ovmptss  7771  filnetlem4  33842
  Copyright terms: Public domain W3C validator