Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.37v | Structured version Visualization version GIF version |
Description: Version of 19.37 2228 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
19.37v | ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.35 1881 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
2 | 19.3v 1986 | . . 3 ⊢ (∀𝑥𝜑 ↔ 𝜑) | |
3 | 2 | imbi1i 349 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: spc3egv 3532 eqvincg 3570 rmoanim 3823 rmoanimALT 3824 axrep5 5211 fvn0ssdmfun 6934 kmlem14 9850 kmlem15 9851 bnj132 32605 bnj1098 32663 bnj150 32756 bnj865 32803 bnj996 32836 bnj1021 32846 bnj1090 32859 bnj1176 32885 sn-axrep5v 40113 cnvssco 41103 refimssco 41104 19.37vv 41892 pm11.61 41900 relopabVD 42410 |
Copyright terms: Public domain | W3C validator |