![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.37v | Structured version Visualization version GIF version |
Description: Version of 19.37 2223 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
19.37v | ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.35 1878 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
2 | 19.3v 1983 | . . 3 ⊢ (∀𝑥𝜑 ↔ 𝜑) | |
3 | 2 | imbi1i 348 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 |
This theorem depends on definitions: df-bi 206 df-ex 1780 |
This theorem is referenced by: spc3egv 3592 eqvincg 3635 rmoanim 3887 rmoanimALT 3888 axrep5 5290 fvn0ssdmfun 7075 kmlem14 10160 kmlem15 10161 bnj132 34035 bnj1098 34092 bnj150 34185 bnj865 34232 bnj996 34265 bnj1021 34275 bnj1090 34288 bnj1176 34314 sn-axrep5v 41339 cnvssco 42659 refimssco 42660 19.37vv 43446 pm11.61 43454 relopabVD 43964 |
Copyright terms: Public domain | W3C validator |