![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.37v | Structured version Visualization version GIF version |
Description: Version of 19.37 2230 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
19.37v | ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.35 1875 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
2 | 19.3v 1979 | . . 3 ⊢ (∀𝑥𝜑 ↔ 𝜑) | |
3 | 2 | imbi1i 349 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
4 | 1, 3 | bitri 275 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: spc3egv 3603 eqvincg 3648 rmoanim 3903 rmoanimALT 3904 axrep5 5293 fvn0ssdmfun 7094 kmlem14 10202 kmlem15 10203 bnj132 34719 bnj1098 34776 bnj150 34869 bnj865 34916 bnj996 34949 bnj1021 34959 bnj1090 34972 bnj1176 34998 sn-axrep5v 42234 cnvssco 43596 refimssco 43597 19.37vv 44381 pm11.61 44389 relopabVD 44899 |
Copyright terms: Public domain | W3C validator |