Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.37v | Structured version Visualization version GIF version |
Description: Version of 19.37 2225 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
19.37v | ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.35 1880 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
2 | 19.3v 1985 | . . 3 ⊢ (∀𝑥𝜑 ↔ 𝜑) | |
3 | 2 | imbi1i 350 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: spc3egv 3542 eqvincg 3578 rmoanim 3827 rmoanimALT 3828 axrep5 5215 fvn0ssdmfun 6952 kmlem14 9919 kmlem15 9920 bnj132 32705 bnj1098 32763 bnj150 32856 bnj865 32903 bnj996 32936 bnj1021 32946 bnj1090 32959 bnj1176 32985 sn-axrep5v 40185 cnvssco 41214 refimssco 41215 19.37vv 42003 pm11.61 42011 relopabVD 42521 |
Copyright terms: Public domain | W3C validator |