MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.37v Structured version   Visualization version   GIF version

Theorem 19.37v 1991
Description: Version of 19.37 2233 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
19.37v (∃𝑥(𝜑𝜓) ↔ (𝜑 → ∃𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem 19.37v
StepHypRef Expression
1 19.35 1876 . 2 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
2 19.3v 1981 . . 3 (∀𝑥𝜑𝜑)
32imbi1i 349 . 2 ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (𝜑 → ∃𝑥𝜓))
41, 3bitri 275 1 (∃𝑥(𝜑𝜓) ↔ (𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  spc3egv  3616  eqvincg  3661  rmoanim  3916  rmoanimALT  3917  axrep5  5309  fvn0ssdmfun  7108  kmlem14  10233  kmlem15  10234  bnj132  34702  bnj1098  34759  bnj150  34852  bnj865  34899  bnj996  34932  bnj1021  34942  bnj1090  34955  bnj1176  34981  sn-axrep5v  42209  cnvssco  43568  refimssco  43569  19.37vv  44354  pm11.61  44362  relopabVD  44872
  Copyright terms: Public domain W3C validator