| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.37v | Structured version Visualization version GIF version | ||
| Description: Version of 19.37 2233 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 19.37v | ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.35 1877 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | 19.3v 1982 | . . 3 ⊢ (∀𝑥𝜑 ↔ 𝜑) | |
| 3 | 2 | imbi1i 349 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: spc3egv 3566 eqvincg 3611 rmoanim 3854 rmoanimALT 3855 axrep5 5237 fvn0ssdmfun 7028 kmlem14 10093 kmlem15 10094 bnj132 34689 bnj1098 34746 bnj150 34839 bnj865 34886 bnj996 34919 bnj1021 34929 bnj1090 34942 bnj1176 34968 sn-axrep5v 42177 cnvssco 43568 refimssco 43569 19.37vv 44347 pm11.61 44355 relopabVD 44863 |
| Copyright terms: Public domain | W3C validator |