MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.37v Structured version   Visualization version   GIF version

Theorem 19.37v 1995
Description: Version of 19.37 2225 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
19.37v (∃𝑥(𝜑𝜓) ↔ (𝜑 → ∃𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem 19.37v
StepHypRef Expression
1 19.35 1880 . 2 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
2 19.3v 1985 . . 3 (∀𝑥𝜑𝜑)
32imbi1i 350 . 2 ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (𝜑 → ∃𝑥𝜓))
41, 3bitri 274 1 (∃𝑥(𝜑𝜓) ↔ (𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  spc3egv  3542  eqvincg  3578  rmoanim  3827  rmoanimALT  3828  axrep5  5215  fvn0ssdmfun  6952  kmlem14  9919  kmlem15  9920  bnj132  32705  bnj1098  32763  bnj150  32856  bnj865  32903  bnj996  32936  bnj1021  32946  bnj1090  32959  bnj1176  32985  sn-axrep5v  40185  cnvssco  41214  refimssco  41215  19.37vv  42003  pm11.61  42011  relopabVD  42521
  Copyright terms: Public domain W3C validator