MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.37v Structured version   Visualization version   GIF version

Theorem 19.37v 1989
Description: Version of 19.37 2230 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
19.37v (∃𝑥(𝜑𝜓) ↔ (𝜑 → ∃𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem 19.37v
StepHypRef Expression
1 19.35 1875 . 2 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
2 19.3v 1979 . . 3 (∀𝑥𝜑𝜑)
32imbi1i 349 . 2 ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (𝜑 → ∃𝑥𝜓))
41, 3bitri 275 1 (∃𝑥(𝜑𝜓) ↔ (𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wex 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965
This theorem depends on definitions:  df-bi 207  df-ex 1777
This theorem is referenced by:  spc3egv  3603  eqvincg  3648  rmoanim  3903  rmoanimALT  3904  axrep5  5293  fvn0ssdmfun  7094  kmlem14  10202  kmlem15  10203  bnj132  34719  bnj1098  34776  bnj150  34869  bnj865  34916  bnj996  34949  bnj1021  34959  bnj1090  34972  bnj1176  34998  sn-axrep5v  42234  cnvssco  43596  refimssco  43597  19.37vv  44381  pm11.61  44389  relopabVD  44899
  Copyright terms: Public domain W3C validator