![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.37v | Structured version Visualization version GIF version |
Description: Version of 19.37 2233 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
19.37v | ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.35 1876 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
2 | 19.3v 1981 | . . 3 ⊢ (∀𝑥𝜑 ↔ 𝜑) | |
3 | 2 | imbi1i 349 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
4 | 1, 3 | bitri 275 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: spc3egv 3616 eqvincg 3661 rmoanim 3916 rmoanimALT 3917 axrep5 5309 fvn0ssdmfun 7108 kmlem14 10233 kmlem15 10234 bnj132 34702 bnj1098 34759 bnj150 34852 bnj865 34899 bnj996 34932 bnj1021 34942 bnj1090 34955 bnj1176 34981 sn-axrep5v 42209 cnvssco 43568 refimssco 43569 19.37vv 44354 pm11.61 44362 relopabVD 44872 |
Copyright terms: Public domain | W3C validator |