| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.37v | Structured version Visualization version GIF version | ||
| Description: Version of 19.37 2235 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 19.37v | ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.35 1878 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | 19.3v 1983 | . . 3 ⊢ (∀𝑥𝜑 ↔ 𝜑) | |
| 3 | 2 | imbi1i 349 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: spc3egv 3553 eqvincg 3598 rmoanim 3840 rmoanimALT 3841 axrep5 5223 fvn0ssdmfun 7007 kmlem14 10055 kmlem15 10056 bnj132 34738 bnj1098 34795 bnj150 34888 bnj865 34935 bnj996 34968 bnj1021 34978 bnj1090 34991 bnj1176 35017 sn-axrep5v 42257 cnvssco 43647 refimssco 43648 19.37vv 44426 pm11.61 44434 relopabVD 44941 |
| Copyright terms: Public domain | W3C validator |