MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.37v Structured version   Visualization version   GIF version

Theorem 19.37v 1997
Description: Version of 19.37 2233 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
19.37v (∃𝑥(𝜑𝜓) ↔ (𝜑 → ∃𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem 19.37v
StepHypRef Expression
1 19.35 1877 . 2 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
2 19.3v 1982 . . 3 (∀𝑥𝜑𝜑)
32imbi1i 349 . 2 ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (𝜑 → ∃𝑥𝜓))
41, 3bitri 275 1 (∃𝑥(𝜑𝜓) ↔ (𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  spc3egv  3569  eqvincg  3614  rmoanim  3857  rmoanimALT  3858  axrep5  5242  fvn0ssdmfun  7046  kmlem14  10117  kmlem15  10118  bnj132  34716  bnj1098  34773  bnj150  34866  bnj865  34913  bnj996  34946  bnj1021  34956  bnj1090  34969  bnj1176  34995  sn-axrep5v  42204  cnvssco  43595  refimssco  43596  19.37vv  44374  pm11.61  44382  relopabVD  44890
  Copyright terms: Public domain W3C validator