| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.37v | Structured version Visualization version GIF version | ||
| Description: Version of 19.37 2233 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 19.37v | ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.35 1877 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | 19.3v 1982 | . . 3 ⊢ (∀𝑥𝜑 ↔ 𝜑) | |
| 3 | 2 | imbi1i 349 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: spc3egv 3558 eqvincg 3603 rmoanim 3846 rmoanimALT 3847 axrep5 5226 fvn0ssdmfun 7008 kmlem14 10058 kmlem15 10059 bnj132 34693 bnj1098 34750 bnj150 34843 bnj865 34890 bnj996 34923 bnj1021 34933 bnj1090 34946 bnj1176 34972 sn-axrep5v 42189 cnvssco 43579 refimssco 43580 19.37vv 44358 pm11.61 44366 relopabVD 44874 |
| Copyright terms: Public domain | W3C validator |