| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.37v | Structured version Visualization version GIF version | ||
| Description: Version of 19.37 2232 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 19.37v | ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.35 1877 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | 19.3v 1981 | . . 3 ⊢ (∀𝑥𝜑 ↔ 𝜑) | |
| 3 | 2 | imbi1i 349 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: spc3egv 3582 eqvincg 3627 rmoanim 3869 rmoanimALT 3870 axrep5 5257 fvn0ssdmfun 7064 kmlem14 10178 kmlem15 10179 bnj132 34757 bnj1098 34814 bnj150 34907 bnj865 34954 bnj996 34987 bnj1021 34997 bnj1090 35010 bnj1176 35036 sn-axrep5v 42267 cnvssco 43630 refimssco 43631 19.37vv 44409 pm11.61 44417 relopabVD 44925 |
| Copyright terms: Public domain | W3C validator |