| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.37iv | Structured version Visualization version GIF version | ||
| Description: Inference associated with 19.37v 1998. (Contributed by NM, 5-Aug-1993.) Remove dependency on ax-6 1968. (Revised by Rohan Ridenour, 15-Apr-2022.) |
| Ref | Expression |
|---|---|
| 19.37iv.1 | ⊢ ∃𝑥(𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 19.37iv | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.37iv.1 | . 2 ⊢ ∃𝑥(𝜑 → 𝜓) | |
| 2 | 19.37imv 1948 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) → (𝜑 → ∃𝑥𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: bnd 9785 zfcndinf 10509 bnj1093 34992 bnj1186 35019 relopabVD 45003 elpglem2 49823 |
| Copyright terms: Public domain | W3C validator |