Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.37iv | Structured version Visualization version GIF version |
Description: Inference associated with 19.37v 1996. (Contributed by NM, 5-Aug-1993.) Remove dependency on ax-6 1972. (Revised by Rohan Ridenour, 15-Apr-2022.) |
Ref | Expression |
---|---|
19.37iv.1 | ⊢ ∃𝑥(𝜑 → 𝜓) |
Ref | Expression |
---|---|
19.37iv | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.37iv.1 | . 2 ⊢ ∃𝑥(𝜑 → 𝜓) | |
2 | 19.37imv 1952 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) → (𝜑 → ∃𝑥𝜓)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: bnd 9581 zfcndinf 10305 bnj1093 32860 bnj1186 32887 relopabVD 42410 elpglem2 46303 |
Copyright terms: Public domain | W3C validator |