MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.37iv Structured version   Visualization version   GIF version

Theorem 19.37iv 1946
Description: Inference associated with 19.37v 1989. (Contributed by NM, 5-Aug-1993.) Remove dependency on ax-6 1965. (Revised by Rohan Ridenour, 15-Apr-2022.)
Hypothesis
Ref Expression
19.37iv.1 𝑥(𝜑𝜓)
Assertion
Ref Expression
19.37iv (𝜑 → ∃𝑥𝜓)
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem 19.37iv
StepHypRef Expression
1 19.37iv.1 . 2 𝑥(𝜑𝜓)
2 19.37imv 1945 . 2 (∃𝑥(𝜑𝜓) → (𝜑 → ∃𝑥𝜓))
31, 2ax-mp 5 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908
This theorem depends on definitions:  df-bi 207  df-ex 1777
This theorem is referenced by:  bnd  9930  zfcndinf  10656  bnj1093  34973  bnj1186  35000  relopabVD  44899  elpglem2  48943
  Copyright terms: Public domain W3C validator