MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcg Structured version   Visualization version   GIF version

Theorem sbcg 3811
Description: Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3809. (Contributed by Alan Sare, 10-Nov-2012.) Reduce axiom usage. (Revised by GG, 12-Oct-2024.)
Assertion
Ref Expression
sbcg (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem sbcg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-sbc 3739 . . 3 ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
2 dfclel 2809 . . 3 (𝐴 ∈ {𝑥𝜑} ↔ ∃𝑦(𝑦 = 𝐴𝑦 ∈ {𝑥𝜑}))
3 df-clab 2712 . . . . . 6 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
4 sbv 2093 . . . . . 6 ([𝑦 / 𝑥]𝜑𝜑)
53, 4bitri 275 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ 𝜑)
65anbi2i 623 . . . 4 ((𝑦 = 𝐴𝑦 ∈ {𝑥𝜑}) ↔ (𝑦 = 𝐴𝜑))
76exbii 1849 . . 3 (∃𝑦(𝑦 = 𝐴𝑦 ∈ {𝑥𝜑}) ↔ ∃𝑦(𝑦 = 𝐴𝜑))
81, 2, 73bitrri 298 . 2 (∃𝑦(𝑦 = 𝐴𝜑) ↔ [𝐴 / 𝑥]𝜑)
9 dfclel 2809 . . . 4 (𝐴𝑉 ↔ ∃𝑦(𝑦 = 𝐴𝑦𝑉))
109biimpi 216 . . 3 (𝐴𝑉 → ∃𝑦(𝑦 = 𝐴𝑦𝑉))
11 simpr 484 . . . . . 6 ((𝑦 = 𝐴𝜑) → 𝜑)
1211ax-gen 1796 . . . . 5 𝑦((𝑦 = 𝐴𝜑) → 𝜑)
13 19.23v 1943 . . . . . 6 (∀𝑦((𝑦 = 𝐴𝜑) → 𝜑) ↔ (∃𝑦(𝑦 = 𝐴𝜑) → 𝜑))
1413biimpi 216 . . . . 5 (∀𝑦((𝑦 = 𝐴𝜑) → 𝜑) → (∃𝑦(𝑦 = 𝐴𝜑) → 𝜑))
1512, 14mp1i 13 . . . 4 (∃𝑦(𝑦 = 𝐴𝑦𝑉) → (∃𝑦(𝑦 = 𝐴𝜑) → 𝜑))
16 2a1 28 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦𝑉 → (𝜑𝑦 = 𝐴)))
1716imp 406 . . . . . . 7 ((𝑦 = 𝐴𝑦𝑉) → (𝜑𝑦 = 𝐴))
1817ancrd 551 . . . . . 6 ((𝑦 = 𝐴𝑦𝑉) → (𝜑 → (𝑦 = 𝐴𝜑)))
1918eximi 1836 . . . . 5 (∃𝑦(𝑦 = 𝐴𝑦𝑉) → ∃𝑦(𝜑 → (𝑦 = 𝐴𝜑)))
20 19.37imv 1948 . . . . 5 (∃𝑦(𝜑 → (𝑦 = 𝐴𝜑)) → (𝜑 → ∃𝑦(𝑦 = 𝐴𝜑)))
2119, 20syl 17 . . . 4 (∃𝑦(𝑦 = 𝐴𝑦𝑉) → (𝜑 → ∃𝑦(𝑦 = 𝐴𝜑)))
2215, 21impbid 212 . . 3 (∃𝑦(𝑦 = 𝐴𝑦𝑉) → (∃𝑦(𝑦 = 𝐴𝜑) ↔ 𝜑))
2310, 22syl 17 . 2 (𝐴𝑉 → (∃𝑦(𝑦 = 𝐴𝜑) ↔ 𝜑))
248, 23bitr3id 285 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  [wsb 2067  wcel 2113  {cab 2711  [wsbc 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2712  df-clel 2808  df-sbc 3739
This theorem is referenced by:  sbcabel  3826  csbconstg  3866  2nreu  4395  csbuni  4890  csbxp  5722  sbcfung  6513  fmptsnd  7112  csbfrecsg  8223  opsbc2ie  32466  f1od2  32713  bnj89  34744  bnj525  34761  bnj1128  35013  csbrdgg  37384  csboprabg  37385  mptsnunlem  37393  topdifinffinlem  37402  relowlpssretop  37419  rdgeqoa  37425  csbfinxpg  37443  gm-sbtru  38156  sbfal  38157  cdlemk40  41026  cdlemkid3N  41042  cdlemkid4  41043  frege70  44040  frege77  44047  frege116  44086  frege118  44088  trsbc  44647  trsbcVD  44983  csbxpgVD  45000  csbunigVD  45004
  Copyright terms: Public domain W3C validator