MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcg Structured version   Visualization version   GIF version

Theorem sbcg 3812
Description: Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3810. (Contributed by Alan Sare, 10-Nov-2012.) Reduce axiom usage. (Revised by GG, 12-Oct-2024.)
Assertion
Ref Expression
sbcg (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem sbcg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-sbc 3740 . . 3 ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
2 dfclel 2805 . . 3 (𝐴 ∈ {𝑥𝜑} ↔ ∃𝑦(𝑦 = 𝐴𝑦 ∈ {𝑥𝜑}))
3 df-clab 2709 . . . . . 6 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
4 sbv 2090 . . . . . 6 ([𝑦 / 𝑥]𝜑𝜑)
53, 4bitri 275 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ 𝜑)
65anbi2i 623 . . . 4 ((𝑦 = 𝐴𝑦 ∈ {𝑥𝜑}) ↔ (𝑦 = 𝐴𝜑))
76exbii 1849 . . 3 (∃𝑦(𝑦 = 𝐴𝑦 ∈ {𝑥𝜑}) ↔ ∃𝑦(𝑦 = 𝐴𝜑))
81, 2, 73bitrri 298 . 2 (∃𝑦(𝑦 = 𝐴𝜑) ↔ [𝐴 / 𝑥]𝜑)
9 dfclel 2805 . . . 4 (𝐴𝑉 ↔ ∃𝑦(𝑦 = 𝐴𝑦𝑉))
109biimpi 216 . . 3 (𝐴𝑉 → ∃𝑦(𝑦 = 𝐴𝑦𝑉))
11 simpr 484 . . . . . 6 ((𝑦 = 𝐴𝜑) → 𝜑)
1211ax-gen 1796 . . . . 5 𝑦((𝑦 = 𝐴𝜑) → 𝜑)
13 19.23v 1943 . . . . . 6 (∀𝑦((𝑦 = 𝐴𝜑) → 𝜑) ↔ (∃𝑦(𝑦 = 𝐴𝜑) → 𝜑))
1413biimpi 216 . . . . 5 (∀𝑦((𝑦 = 𝐴𝜑) → 𝜑) → (∃𝑦(𝑦 = 𝐴𝜑) → 𝜑))
1512, 14mp1i 13 . . . 4 (∃𝑦(𝑦 = 𝐴𝑦𝑉) → (∃𝑦(𝑦 = 𝐴𝜑) → 𝜑))
16 2a1 28 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦𝑉 → (𝜑𝑦 = 𝐴)))
1716imp 406 . . . . . . 7 ((𝑦 = 𝐴𝑦𝑉) → (𝜑𝑦 = 𝐴))
1817ancrd 551 . . . . . 6 ((𝑦 = 𝐴𝑦𝑉) → (𝜑 → (𝑦 = 𝐴𝜑)))
1918eximi 1836 . . . . 5 (∃𝑦(𝑦 = 𝐴𝑦𝑉) → ∃𝑦(𝜑 → (𝑦 = 𝐴𝜑)))
20 19.37imv 1948 . . . . 5 (∃𝑦(𝜑 → (𝑦 = 𝐴𝜑)) → (𝜑 → ∃𝑦(𝑦 = 𝐴𝜑)))
2119, 20syl 17 . . . 4 (∃𝑦(𝑦 = 𝐴𝑦𝑉) → (𝜑 → ∃𝑦(𝑦 = 𝐴𝜑)))
2215, 21impbid 212 . . 3 (∃𝑦(𝑦 = 𝐴𝑦𝑉) → (∃𝑦(𝑦 = 𝐴𝜑) ↔ 𝜑))
2310, 22syl 17 . 2 (𝐴𝑉 → (∃𝑦(𝑦 = 𝐴𝜑) ↔ 𝜑))
248, 23bitr3id 285 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  [wsb 2066  wcel 2110  {cab 2708  [wsbc 3739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2067  df-clab 2709  df-clel 2804  df-sbc 3740
This theorem is referenced by:  sbcabel  3827  csbconstg  3867  2nreu  4392  csbuni  4886  csbxp  5714  sbcfung  6501  fmptsnd  7098  csbfrecsg  8209  opsbc2ie  32445  f1od2  32692  bnj89  34723  bnj525  34740  bnj1128  34992  csbrdgg  37342  csboprabg  37343  mptsnunlem  37351  topdifinffinlem  37360  relowlpssretop  37377  rdgeqoa  37383  csbfinxpg  37401  gm-sbtru  38125  sbfal  38126  cdlemk40  40935  cdlemkid3N  40951  cdlemkid4  40952  frege70  43945  frege77  43952  frege116  43991  frege118  43993  trsbc  44552  trsbcVD  44888  csbxpgVD  44905  csbunigVD  44909
  Copyright terms: Public domain W3C validator