![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcg | Structured version Visualization version GIF version |
Description: Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3881. (Contributed by Alan Sare, 10-Nov-2012.) Reduce axiom usage. (Revised by GG, 12-Oct-2024.) |
Ref | Expression |
---|---|
sbcg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3805 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
2 | dfclel 2820 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑})) | |
3 | df-clab 2718 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
4 | sbv 2088 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | |
5 | 3, 4 | bitri 275 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
6 | 5 | anbi2i 622 | . . . 4 ⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ (𝑦 = 𝐴 ∧ 𝜑)) |
7 | 6 | exbii 1846 | . . 3 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
8 | 1, 2, 7 | 3bitrri 298 | . 2 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) ↔ [𝐴 / 𝑥]𝜑) |
9 | dfclel 2820 | . . . 4 ⊢ (𝐴 ∈ 𝑉 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉)) | |
10 | 9 | biimpi 216 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉)) |
11 | simpr 484 | . . . . . 6 ⊢ ((𝑦 = 𝐴 ∧ 𝜑) → 𝜑) | |
12 | 11 | ax-gen 1793 | . . . . 5 ⊢ ∀𝑦((𝑦 = 𝐴 ∧ 𝜑) → 𝜑) |
13 | 19.23v 1941 | . . . . . 6 ⊢ (∀𝑦((𝑦 = 𝐴 ∧ 𝜑) → 𝜑) ↔ (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) → 𝜑)) | |
14 | 13 | biimpi 216 | . . . . 5 ⊢ (∀𝑦((𝑦 = 𝐴 ∧ 𝜑) → 𝜑) → (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) → 𝜑)) |
15 | 12, 14 | mp1i 13 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) → 𝜑)) |
16 | 2a1 28 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑉 → (𝜑 → 𝑦 = 𝐴))) | |
17 | 16 | imp 406 | . . . . . . 7 ⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (𝜑 → 𝑦 = 𝐴)) |
18 | 17 | ancrd 551 | . . . . . 6 ⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (𝜑 → (𝑦 = 𝐴 ∧ 𝜑))) |
19 | 18 | eximi 1833 | . . . . 5 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → ∃𝑦(𝜑 → (𝑦 = 𝐴 ∧ 𝜑))) |
20 | 19.37imv 1947 | . . . . 5 ⊢ (∃𝑦(𝜑 → (𝑦 = 𝐴 ∧ 𝜑)) → (𝜑 → ∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) | |
21 | 19, 20 | syl 17 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (𝜑 → ∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) |
22 | 15, 21 | impbid 212 | . . 3 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) ↔ 𝜑)) |
23 | 10, 22 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) ↔ 𝜑)) |
24 | 8, 23 | bitr3id 285 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1777 [wsb 2064 ∈ wcel 2108 {cab 2717 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: sbcabel 3900 csbconstg 3940 2nreu 4467 csbuni 4960 csbxp 5799 sbcfung 6602 fmptsnd 7203 csbfrecsg 8325 opsbc2ie 32504 f1od2 32735 bnj89 34697 bnj525 34714 bnj1128 34966 csbrdgg 37295 csboprabg 37296 mptsnunlem 37304 topdifinffinlem 37313 relowlpssretop 37330 rdgeqoa 37336 csbfinxpg 37354 gm-sbtru 38066 sbfal 38067 cdlemk40 40874 cdlemkid3N 40890 cdlemkid4 40891 frege70 43895 frege77 43902 frege116 43941 frege118 43943 trsbc 44511 trsbcVD 44848 csbxpgVD 44865 csbunigVD 44869 |
Copyright terms: Public domain | W3C validator |