| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcg | Structured version Visualization version GIF version | ||
| Description: Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3809. (Contributed by Alan Sare, 10-Nov-2012.) Reduce axiom usage. (Revised by GG, 12-Oct-2024.) |
| Ref | Expression |
|---|---|
| sbcg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3739 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 2 | dfclel 2809 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑})) | |
| 3 | df-clab 2712 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 4 | sbv 2093 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | |
| 5 | 3, 4 | bitri 275 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| 6 | 5 | anbi2i 623 | . . . 4 ⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ (𝑦 = 𝐴 ∧ 𝜑)) |
| 7 | 6 | exbii 1849 | . . 3 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
| 8 | 1, 2, 7 | 3bitrri 298 | . 2 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) ↔ [𝐴 / 𝑥]𝜑) |
| 9 | dfclel 2809 | . . . 4 ⊢ (𝐴 ∈ 𝑉 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉)) | |
| 10 | 9 | biimpi 216 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉)) |
| 11 | simpr 484 | . . . . . 6 ⊢ ((𝑦 = 𝐴 ∧ 𝜑) → 𝜑) | |
| 12 | 11 | ax-gen 1796 | . . . . 5 ⊢ ∀𝑦((𝑦 = 𝐴 ∧ 𝜑) → 𝜑) |
| 13 | 19.23v 1943 | . . . . . 6 ⊢ (∀𝑦((𝑦 = 𝐴 ∧ 𝜑) → 𝜑) ↔ (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) → 𝜑)) | |
| 14 | 13 | biimpi 216 | . . . . 5 ⊢ (∀𝑦((𝑦 = 𝐴 ∧ 𝜑) → 𝜑) → (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) → 𝜑)) |
| 15 | 12, 14 | mp1i 13 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) → 𝜑)) |
| 16 | 2a1 28 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑉 → (𝜑 → 𝑦 = 𝐴))) | |
| 17 | 16 | imp 406 | . . . . . . 7 ⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (𝜑 → 𝑦 = 𝐴)) |
| 18 | 17 | ancrd 551 | . . . . . 6 ⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (𝜑 → (𝑦 = 𝐴 ∧ 𝜑))) |
| 19 | 18 | eximi 1836 | . . . . 5 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → ∃𝑦(𝜑 → (𝑦 = 𝐴 ∧ 𝜑))) |
| 20 | 19.37imv 1948 | . . . . 5 ⊢ (∃𝑦(𝜑 → (𝑦 = 𝐴 ∧ 𝜑)) → (𝜑 → ∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) | |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (𝜑 → ∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) |
| 22 | 15, 21 | impbid 212 | . . 3 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) ↔ 𝜑)) |
| 23 | 10, 22 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) ↔ 𝜑)) |
| 24 | 8, 23 | bitr3id 285 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 [wsb 2067 ∈ wcel 2113 {cab 2711 [wsbc 3738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-clel 2808 df-sbc 3739 |
| This theorem is referenced by: sbcabel 3826 csbconstg 3866 2nreu 4395 csbuni 4890 csbxp 5722 sbcfung 6513 fmptsnd 7112 csbfrecsg 8223 opsbc2ie 32466 f1od2 32713 bnj89 34744 bnj525 34761 bnj1128 35013 csbrdgg 37384 csboprabg 37385 mptsnunlem 37393 topdifinffinlem 37402 relowlpssretop 37419 rdgeqoa 37425 csbfinxpg 37443 gm-sbtru 38156 sbfal 38157 cdlemk40 41026 cdlemkid3N 41042 cdlemkid4 41043 frege70 44040 frege77 44047 frege116 44086 frege118 44088 trsbc 44647 trsbcVD 44983 csbxpgVD 45000 csbunigVD 45004 |
| Copyright terms: Public domain | W3C validator |