| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcg | Structured version Visualization version GIF version | ||
| Description: Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3815. (Contributed by Alan Sare, 10-Nov-2012.) Reduce axiom usage. (Revised by GG, 12-Oct-2024.) |
| Ref | Expression |
|---|---|
| sbcg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3745 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 2 | dfclel 2804 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑})) | |
| 3 | df-clab 2708 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 4 | sbv 2089 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | |
| 5 | 3, 4 | bitri 275 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| 6 | 5 | anbi2i 623 | . . . 4 ⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ (𝑦 = 𝐴 ∧ 𝜑)) |
| 7 | 6 | exbii 1848 | . . 3 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
| 8 | 1, 2, 7 | 3bitrri 298 | . 2 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) ↔ [𝐴 / 𝑥]𝜑) |
| 9 | dfclel 2804 | . . . 4 ⊢ (𝐴 ∈ 𝑉 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉)) | |
| 10 | 9 | biimpi 216 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉)) |
| 11 | simpr 484 | . . . . . 6 ⊢ ((𝑦 = 𝐴 ∧ 𝜑) → 𝜑) | |
| 12 | 11 | ax-gen 1795 | . . . . 5 ⊢ ∀𝑦((𝑦 = 𝐴 ∧ 𝜑) → 𝜑) |
| 13 | 19.23v 1942 | . . . . . 6 ⊢ (∀𝑦((𝑦 = 𝐴 ∧ 𝜑) → 𝜑) ↔ (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) → 𝜑)) | |
| 14 | 13 | biimpi 216 | . . . . 5 ⊢ (∀𝑦((𝑦 = 𝐴 ∧ 𝜑) → 𝜑) → (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) → 𝜑)) |
| 15 | 12, 14 | mp1i 13 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) → 𝜑)) |
| 16 | 2a1 28 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑉 → (𝜑 → 𝑦 = 𝐴))) | |
| 17 | 16 | imp 406 | . . . . . . 7 ⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (𝜑 → 𝑦 = 𝐴)) |
| 18 | 17 | ancrd 551 | . . . . . 6 ⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (𝜑 → (𝑦 = 𝐴 ∧ 𝜑))) |
| 19 | 18 | eximi 1835 | . . . . 5 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → ∃𝑦(𝜑 → (𝑦 = 𝐴 ∧ 𝜑))) |
| 20 | 19.37imv 1947 | . . . . 5 ⊢ (∃𝑦(𝜑 → (𝑦 = 𝐴 ∧ 𝜑)) → (𝜑 → ∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) | |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (𝜑 → ∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) |
| 22 | 15, 21 | impbid 212 | . . 3 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) ↔ 𝜑)) |
| 23 | 10, 22 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) ↔ 𝜑)) |
| 24 | 8, 23 | bitr3id 285 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 [wsb 2065 ∈ wcel 2109 {cab 2707 [wsbc 3744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-clel 2803 df-sbc 3745 |
| This theorem is referenced by: sbcabel 3832 csbconstg 3872 2nreu 4397 csbuni 4890 csbxp 5723 sbcfung 6510 fmptsnd 7109 csbfrecsg 8224 opsbc2ie 32438 f1od2 32677 bnj89 34687 bnj525 34704 bnj1128 34956 csbrdgg 37302 csboprabg 37303 mptsnunlem 37311 topdifinffinlem 37320 relowlpssretop 37337 rdgeqoa 37343 csbfinxpg 37361 gm-sbtru 38085 sbfal 38086 cdlemk40 40896 cdlemkid3N 40912 cdlemkid4 40913 frege70 43906 frege77 43913 frege116 43952 frege118 43954 trsbc 44514 trsbcVD 44850 csbxpgVD 44867 csbunigVD 44871 |
| Copyright terms: Public domain | W3C validator |