| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcg | Structured version Visualization version GIF version | ||
| Description: Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3810. (Contributed by Alan Sare, 10-Nov-2012.) Reduce axiom usage. (Revised by GG, 12-Oct-2024.) |
| Ref | Expression |
|---|---|
| sbcg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3740 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 2 | dfclel 2805 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑})) | |
| 3 | df-clab 2709 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 4 | sbv 2090 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | |
| 5 | 3, 4 | bitri 275 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| 6 | 5 | anbi2i 623 | . . . 4 ⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ (𝑦 = 𝐴 ∧ 𝜑)) |
| 7 | 6 | exbii 1849 | . . 3 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
| 8 | 1, 2, 7 | 3bitrri 298 | . 2 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) ↔ [𝐴 / 𝑥]𝜑) |
| 9 | dfclel 2805 | . . . 4 ⊢ (𝐴 ∈ 𝑉 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉)) | |
| 10 | 9 | biimpi 216 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉)) |
| 11 | simpr 484 | . . . . . 6 ⊢ ((𝑦 = 𝐴 ∧ 𝜑) → 𝜑) | |
| 12 | 11 | ax-gen 1796 | . . . . 5 ⊢ ∀𝑦((𝑦 = 𝐴 ∧ 𝜑) → 𝜑) |
| 13 | 19.23v 1943 | . . . . . 6 ⊢ (∀𝑦((𝑦 = 𝐴 ∧ 𝜑) → 𝜑) ↔ (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) → 𝜑)) | |
| 14 | 13 | biimpi 216 | . . . . 5 ⊢ (∀𝑦((𝑦 = 𝐴 ∧ 𝜑) → 𝜑) → (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) → 𝜑)) |
| 15 | 12, 14 | mp1i 13 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) → 𝜑)) |
| 16 | 2a1 28 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑉 → (𝜑 → 𝑦 = 𝐴))) | |
| 17 | 16 | imp 406 | . . . . . . 7 ⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (𝜑 → 𝑦 = 𝐴)) |
| 18 | 17 | ancrd 551 | . . . . . 6 ⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (𝜑 → (𝑦 = 𝐴 ∧ 𝜑))) |
| 19 | 18 | eximi 1836 | . . . . 5 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → ∃𝑦(𝜑 → (𝑦 = 𝐴 ∧ 𝜑))) |
| 20 | 19.37imv 1948 | . . . . 5 ⊢ (∃𝑦(𝜑 → (𝑦 = 𝐴 ∧ 𝜑)) → (𝜑 → ∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) | |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (𝜑 → ∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) |
| 22 | 15, 21 | impbid 212 | . . 3 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉) → (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) ↔ 𝜑)) |
| 23 | 10, 22 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) ↔ 𝜑)) |
| 24 | 8, 23 | bitr3id 285 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 [wsb 2066 ∈ wcel 2110 {cab 2708 [wsbc 3739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2067 df-clab 2709 df-clel 2804 df-sbc 3740 |
| This theorem is referenced by: sbcabel 3827 csbconstg 3867 2nreu 4392 csbuni 4886 csbxp 5714 sbcfung 6501 fmptsnd 7098 csbfrecsg 8209 opsbc2ie 32445 f1od2 32692 bnj89 34723 bnj525 34740 bnj1128 34992 csbrdgg 37342 csboprabg 37343 mptsnunlem 37351 topdifinffinlem 37360 relowlpssretop 37377 rdgeqoa 37383 csbfinxpg 37401 gm-sbtru 38125 sbfal 38126 cdlemk40 40935 cdlemkid3N 40951 cdlemkid4 40952 frege70 43945 frege77 43952 frege116 43991 frege118 43993 trsbc 44552 trsbcVD 44888 csbxpgVD 44905 csbunigVD 44909 |
| Copyright terms: Public domain | W3C validator |