MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2alimdv Structured version   Visualization version   GIF version

Theorem 2alimdv 1921
Description: Deduction form of Theorem 19.20 of [Margaris] p. 90 with two quantifiers, see alim 1813. (Contributed by NM, 27-Apr-2004.)
Hypothesis
Ref Expression
2alimdv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
2alimdv (𝜑 → (∀𝑥𝑦𝜓 → ∀𝑥𝑦𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem 2alimdv
StepHypRef Expression
1 2alimdv.1 . . 3 (𝜑 → (𝜓𝜒))
21alimdv 1919 . 2 (𝜑 → (∀𝑦𝜓 → ∀𝑦𝜒))
32alimdv 1919 1 (𝜑 → (∀𝑥𝑦𝜓 → ∀𝑥𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem is referenced by:  dfwe2  7624  tz7.48lem  8272  ss2mcls  33530  mclsax  33531  ichnfim  44916  iscnrm3lem2  46228
  Copyright terms: Public domain W3C validator