Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ss2mcls Structured version   Visualization version   GIF version

Theorem ss2mcls 34554
Description: The closure is monotonic under subsets of the original set of expressions and the set of disjoint variable conditions. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d 𝐷 = (mDVβ€˜π‘‡)
mclsval.e 𝐸 = (mExβ€˜π‘‡)
mclsval.c 𝐢 = (mClsβ€˜π‘‡)
mclsval.1 (πœ‘ β†’ 𝑇 ∈ mFS)
mclsval.2 (πœ‘ β†’ 𝐾 βŠ† 𝐷)
mclsval.3 (πœ‘ β†’ 𝐡 βŠ† 𝐸)
ss2mcls.4 (πœ‘ β†’ 𝑋 βŠ† 𝐾)
ss2mcls.5 (πœ‘ β†’ π‘Œ βŠ† 𝐡)
Assertion
Ref Expression
ss2mcls (πœ‘ β†’ (π‘‹πΆπ‘Œ) βŠ† (𝐾𝐢𝐡))

Proof of Theorem ss2mcls
Dummy variables 𝑐 π‘š π‘œ 𝑝 𝑠 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ss2mcls.5 . . . . . 6 (πœ‘ β†’ π‘Œ βŠ† 𝐡)
2 unss1 4179 . . . . . 6 (π‘Œ βŠ† 𝐡 β†’ (π‘Œ βˆͺ ran (mVHβ€˜π‘‡)) βŠ† (𝐡 βˆͺ ran (mVHβ€˜π‘‡)))
3 sstr2 3989 . . . . . 6 ((π‘Œ βˆͺ ran (mVHβ€˜π‘‡)) βŠ† (𝐡 βˆͺ ran (mVHβ€˜π‘‡)) β†’ ((𝐡 βˆͺ ran (mVHβ€˜π‘‡)) βŠ† 𝑐 β†’ (π‘Œ βˆͺ ran (mVHβ€˜π‘‡)) βŠ† 𝑐))
41, 2, 33syl 18 . . . . 5 (πœ‘ β†’ ((𝐡 βˆͺ ran (mVHβ€˜π‘‡)) βŠ† 𝑐 β†’ (π‘Œ βˆͺ ran (mVHβ€˜π‘‡)) βŠ† 𝑐))
5 ss2mcls.4 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝑋 βŠ† 𝐾)
6 sstr2 3989 . . . . . . . . . . . . . 14 ((((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝑋 β†’ (𝑋 βŠ† 𝐾 β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝐾))
75, 6syl5com 31 . . . . . . . . . . . . 13 (πœ‘ β†’ ((((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝑋 β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝐾))
87imim2d 57 . . . . . . . . . . . 12 (πœ‘ β†’ ((π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝑋) β†’ (π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝐾)))
982alimdv 1921 . . . . . . . . . . 11 (πœ‘ β†’ (βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝑋) β†’ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝐾)))
109anim2d 612 . . . . . . . . . 10 (πœ‘ β†’ (((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝑋)) β†’ ((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝐾))))
1110imim1d 82 . . . . . . . . 9 (πœ‘ β†’ ((((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐) β†’ (((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝑋)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))
1211ralimdv 3169 . . . . . . . 8 (πœ‘ β†’ (βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝑋)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))
1312imim2d 57 . . . . . . 7 (πœ‘ β†’ ((βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‡) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐)) β†’ (βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‡) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝑋)) β†’ (π‘ β€˜π‘) ∈ 𝑐))))
1413alimdv 1919 . . . . . 6 (πœ‘ β†’ (βˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‡) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐)) β†’ βˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‡) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝑋)) β†’ (π‘ β€˜π‘) ∈ 𝑐))))
15142alimdv 1921 . . . . 5 (πœ‘ β†’ (βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‡) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐)) β†’ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‡) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝑋)) β†’ (π‘ β€˜π‘) ∈ 𝑐))))
164, 15anim12d 609 . . . 4 (πœ‘ β†’ (((𝐡 βˆͺ ran (mVHβ€˜π‘‡)) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‡) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐))) β†’ ((π‘Œ βˆͺ ran (mVHβ€˜π‘‡)) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‡) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝑋)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))))
1716ss2abdv 4060 . . 3 (πœ‘ β†’ {𝑐 ∣ ((𝐡 βˆͺ ran (mVHβ€˜π‘‡)) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‡) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))} βŠ† {𝑐 ∣ ((π‘Œ βˆͺ ran (mVHβ€˜π‘‡)) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‡) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝑋)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))})
18 intss 4973 . . 3 ({𝑐 ∣ ((𝐡 βˆͺ ran (mVHβ€˜π‘‡)) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‡) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))} βŠ† {𝑐 ∣ ((π‘Œ βˆͺ ran (mVHβ€˜π‘‡)) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‡) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝑋)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))} β†’ ∩ {𝑐 ∣ ((π‘Œ βˆͺ ran (mVHβ€˜π‘‡)) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‡) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝑋)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))} βŠ† ∩ {𝑐 ∣ ((𝐡 βˆͺ ran (mVHβ€˜π‘‡)) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‡) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))})
1917, 18syl 17 . 2 (πœ‘ β†’ ∩ {𝑐 ∣ ((π‘Œ βˆͺ ran (mVHβ€˜π‘‡)) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‡) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝑋)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))} βŠ† ∩ {𝑐 ∣ ((𝐡 βˆͺ ran (mVHβ€˜π‘‡)) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‡) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))})
20 mclsval.d . . 3 𝐷 = (mDVβ€˜π‘‡)
21 mclsval.e . . 3 𝐸 = (mExβ€˜π‘‡)
22 mclsval.c . . 3 𝐢 = (mClsβ€˜π‘‡)
23 mclsval.1 . . 3 (πœ‘ β†’ 𝑇 ∈ mFS)
24 mclsval.2 . . . 4 (πœ‘ β†’ 𝐾 βŠ† 𝐷)
255, 24sstrd 3992 . . 3 (πœ‘ β†’ 𝑋 βŠ† 𝐷)
26 mclsval.3 . . . 4 (πœ‘ β†’ 𝐡 βŠ† 𝐸)
271, 26sstrd 3992 . . 3 (πœ‘ β†’ π‘Œ βŠ† 𝐸)
28 eqid 2732 . . 3 (mVHβ€˜π‘‡) = (mVHβ€˜π‘‡)
29 eqid 2732 . . 3 (mAxβ€˜π‘‡) = (mAxβ€˜π‘‡)
30 eqid 2732 . . 3 (mSubstβ€˜π‘‡) = (mSubstβ€˜π‘‡)
31 eqid 2732 . . 3 (mVarsβ€˜π‘‡) = (mVarsβ€˜π‘‡)
3220, 21, 22, 23, 25, 27, 28, 29, 30, 31mclsval 34549 . 2 (πœ‘ β†’ (π‘‹πΆπ‘Œ) = ∩ {𝑐 ∣ ((π‘Œ βˆͺ ran (mVHβ€˜π‘‡)) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‡) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝑋)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))})
3320, 21, 22, 23, 24, 26, 28, 29, 30, 31mclsval 34549 . 2 (πœ‘ β†’ (𝐾𝐢𝐡) = ∩ {𝑐 ∣ ((𝐡 βˆͺ ran (mVHβ€˜π‘‡)) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‡) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‡)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‡))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‡)β€˜(π‘ β€˜((mVHβ€˜π‘‡)β€˜π‘¦)))) βŠ† 𝐾)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))})
3419, 32, 333sstr4d 4029 1 (πœ‘ β†’ (π‘‹πΆπ‘Œ) βŠ† (𝐾𝐢𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396  βˆ€wal 1539   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061   βˆͺ cun 3946   βŠ† wss 3948  βŸ¨cotp 4636  βˆ© cint 4950   class class class wbr 5148   Γ— cxp 5674  ran crn 5677   β€œ cima 5679  β€˜cfv 6543  (class class class)co 7408  mAxcmax 34451  mExcmex 34453  mDVcmdv 34454  mVarscmvrs 34455  mSubstcmsub 34457  mVHcmvh 34458  mFScmfs 34462  mClscmcls 34463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-seq 13966  df-hash 14290  df-word 14464  df-concat 14520  df-s1 14545  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-0g 17386  df-gsum 17387  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-submnd 18671  df-frmd 18729  df-mrex 34472  df-mex 34473  df-mrsub 34476  df-msub 34477  df-mvh 34478  df-mpst 34479  df-msr 34480  df-msta 34481  df-mfs 34482  df-mcls 34483
This theorem is referenced by:  mthmpps  34568
  Copyright terms: Public domain W3C validator