| Step | Hyp | Ref
| Expression |
| 1 | | ss2mcls.5 |
. . . . . 6
⊢ (𝜑 → 𝑌 ⊆ 𝐵) |
| 2 | | unss1 4165 |
. . . . . 6
⊢ (𝑌 ⊆ 𝐵 → (𝑌 ∪ ran (mVH‘𝑇)) ⊆ (𝐵 ∪ ran (mVH‘𝑇))) |
| 3 | | sstr2 3970 |
. . . . . 6
⊢ ((𝑌 ∪ ran (mVH‘𝑇)) ⊆ (𝐵 ∪ ran (mVH‘𝑇)) → ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 → (𝑌 ∪ ran (mVH‘𝑇)) ⊆ 𝑐)) |
| 4 | 1, 2, 3 | 3syl 18 |
. . . . 5
⊢ (𝜑 → ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 → (𝑌 ∪ ran (mVH‘𝑇)) ⊆ 𝑐)) |
| 5 | | ss2mcls.4 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ⊆ 𝐾) |
| 6 | | sstr2 3970 |
. . . . . . . . . . . . . 14
⊢
((((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋 → (𝑋 ⊆ 𝐾 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) |
| 7 | 5, 6 | syl5com 31 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) |
| 8 | 7 | imim2d 57 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋) → (𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾))) |
| 9 | 8 | 2alimdv 1918 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋) → ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾))) |
| 10 | 9 | anim2d 612 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → ((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)))) |
| 11 | 10 | imim1d 82 |
. . . . . . . . 9
⊢ (𝜑 → ((((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐) → (((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠‘𝑝) ∈ 𝑐))) |
| 12 | 11 | ralimdv 3155 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠‘𝑝) ∈ 𝑐))) |
| 13 | 12 | imim2d 57 |
. . . . . . 7
⊢ (𝜑 → ((〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)) → (〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠‘𝑝) ∈ 𝑐)))) |
| 14 | 13 | alimdv 1916 |
. . . . . 6
⊢ (𝜑 → (∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)) → ∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠‘𝑝) ∈ 𝑐)))) |
| 15 | 14 | 2alimdv 1918 |
. . . . 5
⊢ (𝜑 → (∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)) → ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠‘𝑝) ∈ 𝑐)))) |
| 16 | 4, 15 | anim12d 609 |
. . . 4
⊢ (𝜑 → (((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐))) → ((𝑌 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠‘𝑝) ∈ 𝑐))))) |
| 17 | 16 | ss2abdv 4046 |
. . 3
⊢ (𝜑 → {𝑐 ∣ ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ⊆ {𝑐 ∣ ((𝑌 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠‘𝑝) ∈ 𝑐)))}) |
| 18 | | intss 4950 |
. . 3
⊢ ({𝑐 ∣ ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ⊆ {𝑐 ∣ ((𝑌 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠‘𝑝) ∈ 𝑐)))} → ∩
{𝑐 ∣ ((𝑌 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠‘𝑝) ∈ 𝑐)))} ⊆ ∩
{𝑐 ∣ ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))}) |
| 19 | 17, 18 | syl 17 |
. 2
⊢ (𝜑 → ∩ {𝑐
∣ ((𝑌 ∪ ran
(mVH‘𝑇)) ⊆
𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠‘𝑝) ∈ 𝑐)))} ⊆ ∩
{𝑐 ∣ ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))}) |
| 20 | | mclsval.d |
. . 3
⊢ 𝐷 = (mDV‘𝑇) |
| 21 | | mclsval.e |
. . 3
⊢ 𝐸 = (mEx‘𝑇) |
| 22 | | mclsval.c |
. . 3
⊢ 𝐶 = (mCls‘𝑇) |
| 23 | | mclsval.1 |
. . 3
⊢ (𝜑 → 𝑇 ∈ mFS) |
| 24 | | mclsval.2 |
. . . 4
⊢ (𝜑 → 𝐾 ⊆ 𝐷) |
| 25 | 5, 24 | sstrd 3974 |
. . 3
⊢ (𝜑 → 𝑋 ⊆ 𝐷) |
| 26 | | mclsval.3 |
. . . 4
⊢ (𝜑 → 𝐵 ⊆ 𝐸) |
| 27 | 1, 26 | sstrd 3974 |
. . 3
⊢ (𝜑 → 𝑌 ⊆ 𝐸) |
| 28 | | eqid 2736 |
. . 3
⊢
(mVH‘𝑇) =
(mVH‘𝑇) |
| 29 | | eqid 2736 |
. . 3
⊢
(mAx‘𝑇) =
(mAx‘𝑇) |
| 30 | | eqid 2736 |
. . 3
⊢
(mSubst‘𝑇) =
(mSubst‘𝑇) |
| 31 | | eqid 2736 |
. . 3
⊢
(mVars‘𝑇) =
(mVars‘𝑇) |
| 32 | 20, 21, 22, 23, 25, 27, 28, 29, 30, 31 | mclsval 35590 |
. 2
⊢ (𝜑 → (𝑋𝐶𝑌) = ∩ {𝑐 ∣ ((𝑌 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠‘𝑝) ∈ 𝑐)))}) |
| 33 | 20, 21, 22, 23, 24, 26, 28, 29, 30, 31 | mclsval 35590 |
. 2
⊢ (𝜑 → (𝐾𝐶𝐵) = ∩ {𝑐 ∣ ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))}) |
| 34 | 19, 32, 33 | 3sstr4d 4019 |
1
⊢ (𝜑 → (𝑋𝐶𝑌) ⊆ (𝐾𝐶𝐵)) |