Step | Hyp | Ref
| Expression |
1 | | ss2mcls.5 |
. . . . . 6
β’ (π β π β π΅) |
2 | | unss1 4179 |
. . . . . 6
β’ (π β π΅ β (π βͺ ran (mVHβπ)) β (π΅ βͺ ran (mVHβπ))) |
3 | | sstr2 3989 |
. . . . . 6
β’ ((π βͺ ran (mVHβπ)) β (π΅ βͺ ran (mVHβπ)) β ((π΅ βͺ ran (mVHβπ)) β π β (π βͺ ran (mVHβπ)) β π)) |
4 | 1, 2, 3 | 3syl 18 |
. . . . 5
β’ (π β ((π΅ βͺ ran (mVHβπ)) β π β (π βͺ ran (mVHβπ)) β π)) |
5 | | ss2mcls.4 |
. . . . . . . . . . . . . 14
β’ (π β π β πΎ) |
6 | | sstr2 3989 |
. . . . . . . . . . . . . 14
β’
((((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β π β (π β πΎ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β πΎ)) |
7 | 5, 6 | syl5com 31 |
. . . . . . . . . . . . 13
β’ (π β ((((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β π β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β πΎ)) |
8 | 7 | imim2d 57 |
. . . . . . . . . . . 12
β’ (π β ((π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β π) β (π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β πΎ))) |
9 | 8 | 2alimdv 1921 |
. . . . . . . . . . 11
β’ (π β (βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β π) β βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β πΎ))) |
10 | 9 | anim2d 612 |
. . . . . . . . . 10
β’ (π β (((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β π)) β ((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β πΎ)))) |
11 | 10 | imim1d 82 |
. . . . . . . . 9
β’ (π β ((((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β πΎ)) β (π βπ) β π) β (((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β π)) β (π βπ) β π))) |
12 | 11 | ralimdv 3169 |
. . . . . . . 8
β’ (π β (βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β πΎ)) β (π βπ) β π) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β π)) β (π βπ) β π))) |
13 | 12 | imim2d 57 |
. . . . . . 7
β’ (π β ((β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β πΎ)) β (π βπ) β π)) β (β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β π)) β (π βπ) β π)))) |
14 | 13 | alimdv 1919 |
. . . . . 6
β’ (π β (βπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β πΎ)) β (π βπ) β π)) β βπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β π)) β (π βπ) β π)))) |
15 | 14 | 2alimdv 1921 |
. . . . 5
β’ (π β (βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β πΎ)) β (π βπ) β π)) β βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β π)) β (π βπ) β π)))) |
16 | 4, 15 | anim12d 609 |
. . . 4
β’ (π β (((π΅ βͺ ran (mVHβπ)) β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β πΎ)) β (π βπ) β π))) β ((π βͺ ran (mVHβπ)) β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β π)) β (π βπ) β π))))) |
17 | 16 | ss2abdv 4060 |
. . 3
β’ (π β {π β£ ((π΅ βͺ ran (mVHβπ)) β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β πΎ)) β (π βπ) β π)))} β {π β£ ((π βͺ ran (mVHβπ)) β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β π)) β (π βπ) β π)))}) |
18 | | intss 4973 |
. . 3
β’ ({π β£ ((π΅ βͺ ran (mVHβπ)) β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β πΎ)) β (π βπ) β π)))} β {π β£ ((π βͺ ran (mVHβπ)) β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β π)) β (π βπ) β π)))} β β©
{π β£ ((π βͺ ran (mVHβπ)) β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β π)) β (π βπ) β π)))} β β©
{π β£ ((π΅ βͺ ran (mVHβπ)) β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β πΎ)) β (π βπ) β π)))}) |
19 | 17, 18 | syl 17 |
. 2
β’ (π β β© {π
β£ ((π βͺ ran
(mVHβπ)) β
π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β π)) β (π βπ) β π)))} β β©
{π β£ ((π΅ βͺ ran (mVHβπ)) β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β πΎ)) β (π βπ) β π)))}) |
20 | | mclsval.d |
. . 3
β’ π· = (mDVβπ) |
21 | | mclsval.e |
. . 3
β’ πΈ = (mExβπ) |
22 | | mclsval.c |
. . 3
β’ πΆ = (mClsβπ) |
23 | | mclsval.1 |
. . 3
β’ (π β π β mFS) |
24 | | mclsval.2 |
. . . 4
β’ (π β πΎ β π·) |
25 | 5, 24 | sstrd 3992 |
. . 3
β’ (π β π β π·) |
26 | | mclsval.3 |
. . . 4
β’ (π β π΅ β πΈ) |
27 | 1, 26 | sstrd 3992 |
. . 3
β’ (π β π β πΈ) |
28 | | eqid 2732 |
. . 3
β’
(mVHβπ) =
(mVHβπ) |
29 | | eqid 2732 |
. . 3
β’
(mAxβπ) =
(mAxβπ) |
30 | | eqid 2732 |
. . 3
β’
(mSubstβπ) =
(mSubstβπ) |
31 | | eqid 2732 |
. . 3
β’
(mVarsβπ) =
(mVarsβπ) |
32 | 20, 21, 22, 23, 25, 27, 28, 29, 30, 31 | mclsval 34549 |
. 2
β’ (π β (ππΆπ) = β© {π β£ ((π βͺ ran (mVHβπ)) β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β π)) β (π βπ) β π)))}) |
33 | 20, 21, 22, 23, 24, 26, 28, 29, 30, 31 | mclsval 34549 |
. 2
β’ (π β (πΎπΆπ΅) = β© {π β£ ((π΅ βͺ ran (mVHβπ)) β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran (mVHβπ))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β((mVHβπ)βπ₯))) Γ ((mVarsβπ)β(π β((mVHβπ)βπ¦)))) β πΎ)) β (π βπ) β π)))}) |
34 | 19, 32, 33 | 3sstr4d 4029 |
1
β’ (π β (ππΆπ) β (πΎπΆπ΅)) |