Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ss2mcls Structured version   Visualization version   GIF version

Theorem ss2mcls 33430
Description: The closure is monotonic under subsets of the original set of expressions and the set of disjoint variable conditions. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d 𝐷 = (mDV‘𝑇)
mclsval.e 𝐸 = (mEx‘𝑇)
mclsval.c 𝐶 = (mCls‘𝑇)
mclsval.1 (𝜑𝑇 ∈ mFS)
mclsval.2 (𝜑𝐾𝐷)
mclsval.3 (𝜑𝐵𝐸)
ss2mcls.4 (𝜑𝑋𝐾)
ss2mcls.5 (𝜑𝑌𝐵)
Assertion
Ref Expression
ss2mcls (𝜑 → (𝑋𝐶𝑌) ⊆ (𝐾𝐶𝐵))

Proof of Theorem ss2mcls
Dummy variables 𝑐 𝑚 𝑜 𝑝 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ss2mcls.5 . . . . . 6 (𝜑𝑌𝐵)
2 unss1 4109 . . . . . 6 (𝑌𝐵 → (𝑌 ∪ ran (mVH‘𝑇)) ⊆ (𝐵 ∪ ran (mVH‘𝑇)))
3 sstr2 3924 . . . . . 6 ((𝑌 ∪ ran (mVH‘𝑇)) ⊆ (𝐵 ∪ ran (mVH‘𝑇)) → ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 → (𝑌 ∪ ran (mVH‘𝑇)) ⊆ 𝑐))
41, 2, 33syl 18 . . . . 5 (𝜑 → ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 → (𝑌 ∪ ran (mVH‘𝑇)) ⊆ 𝑐))
5 ss2mcls.4 . . . . . . . . . . . . . 14 (𝜑𝑋𝐾)
6 sstr2 3924 . . . . . . . . . . . . . 14 ((((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋 → (𝑋𝐾 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾))
75, 6syl5com 31 . . . . . . . . . . . . 13 (𝜑 → ((((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾))
87imim2d 57 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋) → (𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)))
982alimdv 1922 . . . . . . . . . . 11 (𝜑 → (∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋) → ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)))
109anim2d 611 . . . . . . . . . 10 (𝜑 → (((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → ((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾))))
1110imim1d 82 . . . . . . . . 9 (𝜑 → ((((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) → (((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠𝑝) ∈ 𝑐)))
1211ralimdv 3103 . . . . . . . 8 (𝜑 → (∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠𝑝) ∈ 𝑐)))
1312imim2d 57 . . . . . . 7 (𝜑 → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠𝑝) ∈ 𝑐))))
1413alimdv 1920 . . . . . 6 (𝜑 → (∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠𝑝) ∈ 𝑐))))
15142alimdv 1922 . . . . 5 (𝜑 → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠𝑝) ∈ 𝑐))))
164, 15anim12d 608 . . . 4 (𝜑 → (((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → ((𝑌 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠𝑝) ∈ 𝑐)))))
1716ss2abdv 3993 . . 3 (𝜑 → {𝑐 ∣ ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ {𝑐 ∣ ((𝑌 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠𝑝) ∈ 𝑐)))})
18 intss 4897 . . 3 ({𝑐 ∣ ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ {𝑐 ∣ ((𝑌 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠𝑝) ∈ 𝑐)))} → {𝑐 ∣ ((𝑌 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ {𝑐 ∣ ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
1917, 18syl 17 . 2 (𝜑 {𝑐 ∣ ((𝑌 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ {𝑐 ∣ ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
20 mclsval.d . . 3 𝐷 = (mDV‘𝑇)
21 mclsval.e . . 3 𝐸 = (mEx‘𝑇)
22 mclsval.c . . 3 𝐶 = (mCls‘𝑇)
23 mclsval.1 . . 3 (𝜑𝑇 ∈ mFS)
24 mclsval.2 . . . 4 (𝜑𝐾𝐷)
255, 24sstrd 3927 . . 3 (𝜑𝑋𝐷)
26 mclsval.3 . . . 4 (𝜑𝐵𝐸)
271, 26sstrd 3927 . . 3 (𝜑𝑌𝐸)
28 eqid 2738 . . 3 (mVH‘𝑇) = (mVH‘𝑇)
29 eqid 2738 . . 3 (mAx‘𝑇) = (mAx‘𝑇)
30 eqid 2738 . . 3 (mSubst‘𝑇) = (mSubst‘𝑇)
31 eqid 2738 . . 3 (mVars‘𝑇) = (mVars‘𝑇)
3220, 21, 22, 23, 25, 27, 28, 29, 30, 31mclsval 33425 . 2 (𝜑 → (𝑋𝐶𝑌) = {𝑐 ∣ ((𝑌 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝑋)) → (𝑠𝑝) ∈ 𝑐)))})
3320, 21, 22, 23, 24, 26, 28, 29, 30, 31mclsval 33425 . 2 (𝜑 → (𝐾𝐶𝐵) = {𝑐 ∣ ((𝐵 ∪ ran (mVH‘𝑇)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑇))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘((mVH‘𝑇)‘𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
3419, 32, 333sstr4d 3964 1 (𝜑 → (𝑋𝐶𝑌) ⊆ (𝐾𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wcel 2108  {cab 2715  wral 3063  cun 3881  wss 3883  cotp 4566   cint 4876   class class class wbr 5070   × cxp 5578  ran crn 5581  cima 5583  cfv 6418  (class class class)co 7255  mAxcmax 33327  mExcmex 33329  mDVcmdv 33330  mVarscmvrs 33331  mSubstcmsub 33333  mVHcmvh 33334  mFScmfs 33338  mClscmcls 33339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-frmd 18403  df-mrex 33348  df-mex 33349  df-mrsub 33352  df-msub 33353  df-mvh 33354  df-mpst 33355  df-msr 33356  df-msta 33357  df-mfs 33358  df-mcls 33359
This theorem is referenced by:  mthmpps  33444
  Copyright terms: Public domain W3C validator