Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2eximdv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.22 of [Margaris] p. 90 with two quantifiers, see exim 1835. (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
2alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
2eximdv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2alimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | eximdv 1919 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → ∃𝑦𝜒)) |
3 | 2 | eximdv 1919 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 |
This theorem depends on definitions: df-bi 206 df-ex 1781 |
This theorem is referenced by: 2eu6 2656 cgsex2g 3484 cgsex4g 3485 cgsex4gOLD 3486 spc2egv 3547 rexopabb 5473 relop 5793 elinxp 5962 opreuopreu 7945 en3 9148 en4 9149 addsrpr 10933 mulsrpr 10934 hash2prde 14285 pmtrrn2 19165 umgredg 27798 umgr2wlkon 28604 trsp2cyc 31677 acycgrsubgr 33419 satfvsucsuc 33626 fmla0xp 33644 fundmpss 34026 pellexlem5 40968 ax6e2eq 42550 fnchoice 42945 fzisoeu 43226 stoweidlem35 43964 stoweidlem60 43989 or2expropbi 44946 ich2exprop 45341 |
Copyright terms: Public domain | W3C validator |