![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2eximdv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.22 of [Margaris] p. 90 with two quantifiers, see exim 1832. (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
2alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
2eximdv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2alimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | eximdv 1916 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → ∃𝑦𝜒)) |
3 | 2 | eximdv 1916 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: 2eu6 2660 cgsex2g 3537 cgsex4g 3538 cgsex4gOLD 3539 spc2egv 3612 rexopabb 5547 relop 5875 elinxp 6048 opreuopreu 8075 en3 9344 en4 9345 addsrpr 11144 mulsrpr 11145 hash2prde 14519 hash3tpde 14542 pmtrrn2 19502 umgredg 29173 umgr2wlkon 29983 trsp2cyc 33116 acycgrsubgr 35126 satfvsucsuc 35333 fmla0xp 35351 fundmpss 35730 pellexlem5 42789 ax6e2eq 44528 fnchoice 44929 fzisoeu 45215 stoweidlem35 45956 stoweidlem60 45981 or2expropbi 46949 ich2exprop 47345 |
Copyright terms: Public domain | W3C validator |