Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2eximdv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.22 of [Margaris] p. 90 with two quantifiers, see exim 1836. (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
2alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
2eximdv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2alimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | eximdv 1920 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → ∃𝑦𝜒)) |
3 | 2 | eximdv 1920 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: 2eu6 2658 cgsex2g 3475 cgsex4g 3476 cgsex4gOLD 3477 spc2egv 3538 rexopabb 5441 relop 5759 elinxp 5929 opreuopreu 7876 en3 9054 en4 9055 addsrpr 10831 mulsrpr 10832 hash2prde 14184 pmtrrn2 19068 umgredg 27508 umgr2wlkon 28315 trsp2cyc 31390 acycgrsubgr 33120 satfvsucsuc 33327 fmla0xp 33345 fundmpss 33740 pellexlem5 40655 ax6e2eq 42177 fnchoice 42572 fzisoeu 42839 stoweidlem35 43576 stoweidlem60 43601 or2expropbi 44528 ich2exprop 44923 |
Copyright terms: Public domain | W3C validator |