![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2eximdv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.22 of [Margaris] p. 90 with two quantifiers, see exim 1836. (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
2alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
2eximdv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2alimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | eximdv 1920 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → ∃𝑦𝜒)) |
3 | 2 | eximdv 1920 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1782 |
This theorem is referenced by: 2eu6 2652 cgsex2g 3519 cgsex4g 3520 cgsex4gOLD 3521 cgsex4gOLDOLD 3522 spc2egv 3589 rexopabb 5528 relop 5850 elinxp 6019 opreuopreu 8019 en3 9281 en4 9282 addsrpr 11069 mulsrpr 11070 hash2prde 14430 pmtrrn2 19327 umgredg 28395 umgr2wlkon 29201 trsp2cyc 32277 acycgrsubgr 34144 satfvsucsuc 34351 fmla0xp 34369 fundmpss 34733 pellexlem5 41561 ax6e2eq 43308 fnchoice 43703 fzisoeu 44000 stoweidlem35 44741 stoweidlem60 44766 or2expropbi 45734 ich2exprop 46129 |
Copyright terms: Public domain | W3C validator |