| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2eximdv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.22 of [Margaris] p. 90 with two quantifiers, see exim 1834. (Contributed by NM, 3-Aug-1995.) |
| Ref | Expression |
|---|---|
| 2alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| 2eximdv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2alimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | eximdv 1917 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → ∃𝑦𝜒)) |
| 3 | 2 | eximdv 1917 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 2eu6 2650 cgsex2g 3484 cgsex4g 3485 cgsex4gOLD 3486 spc2egv 3556 rexopabb 5475 relop 5797 elinxp 5974 opreuopreu 7976 en3 9185 en4 9186 addsrpr 10988 mulsrpr 10989 hash2prde 14395 hash3tpde 14418 pmtrrn2 19357 umgredg 29101 umgr2wlkon 29913 trsp2cyc 33078 acycgrsubgr 35130 satfvsucsuc 35337 fmla0xp 35355 fundmpss 35739 pellexlem5 42806 ax6e2eq 44531 fnchoice 45007 fzisoeu 45282 stoweidlem35 46017 stoweidlem60 46042 or2expropbi 47019 ich2exprop 47456 grlimprclnbgr 47981 |
| Copyright terms: Public domain | W3C validator |