| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2eximdv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.22 of [Margaris] p. 90 with two quantifiers, see exim 1834. (Contributed by NM, 3-Aug-1995.) |
| Ref | Expression |
|---|---|
| 2alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| 2eximdv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2alimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | eximdv 1917 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → ∃𝑦𝜒)) |
| 3 | 2 | eximdv 1917 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 2eu6 2650 cgsex2g 3493 cgsex4g 3494 cgsex4gOLD 3495 spc2egv 3565 rexopabb 5488 relop 5814 elinxp 5990 opreuopreu 8013 en3 9227 en4 9228 addsrpr 11028 mulsrpr 11029 hash2prde 14435 hash3tpde 14458 pmtrrn2 19390 umgredg 29065 umgr2wlkon 29880 trsp2cyc 33080 acycgrsubgr 35145 satfvsucsuc 35352 fmla0xp 35370 fundmpss 35754 pellexlem5 42821 ax6e2eq 44547 fnchoice 45023 fzisoeu 45298 stoweidlem35 46033 stoweidlem60 46058 or2expropbi 47032 ich2exprop 47469 |
| Copyright terms: Public domain | W3C validator |