| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2eximdv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.22 of [Margaris] p. 90 with two quantifiers, see exim 1835. (Contributed by NM, 3-Aug-1995.) |
| Ref | Expression |
|---|---|
| 2alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| 2eximdv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2alimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | eximdv 1918 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → ∃𝑦𝜒)) |
| 3 | 2 | eximdv 1918 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 2eu6 2654 cgsex2g 3483 cgsex4g 3484 cgsex4gOLD 3485 spc2egv 3550 rexopabb 5471 relop 5794 elinxp 5972 opreuopreu 7972 en3 9172 en4 9173 addsrpr 10973 mulsrpr 10974 hash2prde 14379 hash3tpde 14402 pmtrrn2 19374 umgredg 29118 umgr2wlkon 29930 trsp2cyc 33099 acycgrsubgr 35223 satfvsucsuc 35430 fmla0xp 35448 fundmpss 35832 pellexlem5 42951 ax6e2eq 44675 fnchoice 45151 fzisoeu 45426 stoweidlem35 46158 stoweidlem60 46183 or2expropbi 47159 ich2exprop 47596 grlimprclnbgr 48121 |
| Copyright terms: Public domain | W3C validator |