Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2eximdv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.22 of [Margaris] p. 90 with two quantifiers, see exim 1837. (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
2alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
2eximdv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2alimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | eximdv 1921 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → ∃𝑦𝜒)) |
3 | 2 | eximdv 1921 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: 2eu6 2658 cgsex2g 3465 cgsex4g 3466 cgsex4gOLD 3467 spc2egv 3528 rexopabb 5434 relop 5748 elinxp 5918 opreuopreu 7849 en3 8984 en4 8985 addsrpr 10762 mulsrpr 10763 hash2prde 14112 pmtrrn2 18983 umgredg 27411 umgr2wlkon 28216 trsp2cyc 31292 acycgrsubgr 33020 satfvsucsuc 33227 fmla0xp 33245 fundmpss 33646 pellexlem5 40571 ax6e2eq 42066 fnchoice 42461 fzisoeu 42729 stoweidlem35 43466 stoweidlem60 43491 or2expropbi 44415 ich2exprop 44811 |
Copyright terms: Public domain | W3C validator |