| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2eximdv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.22 of [Margaris] p. 90 with two quantifiers, see exim 1834. (Contributed by NM, 3-Aug-1995.) |
| Ref | Expression |
|---|---|
| 2alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| 2eximdv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2alimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | eximdv 1917 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → ∃𝑦𝜒)) |
| 3 | 2 | eximdv 1917 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 2eu6 2657 cgsex2g 3511 cgsex4g 3512 cgsex4gOLD 3513 spc2egv 3583 rexopabb 5508 relop 5835 elinxp 6011 opreuopreu 8038 en3 9293 en4 9294 addsrpr 11094 mulsrpr 11095 hash2prde 14493 hash3tpde 14516 pmtrrn2 19446 umgredg 29122 umgr2wlkon 29937 trsp2cyc 33139 acycgrsubgr 35185 satfvsucsuc 35392 fmla0xp 35410 fundmpss 35789 pellexlem5 42823 ax6e2eq 44549 fnchoice 45020 fzisoeu 45296 stoweidlem35 46031 stoweidlem60 46056 or2expropbi 47030 ich2exprop 47452 |
| Copyright terms: Public domain | W3C validator |