| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2eximdv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.22 of [Margaris] p. 90 with two quantifiers, see exim 1835. (Contributed by NM, 3-Aug-1995.) |
| Ref | Expression |
|---|---|
| 2alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| 2eximdv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2alimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | eximdv 1918 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → ∃𝑦𝜒)) |
| 3 | 2 | eximdv 1918 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑥∃𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 2eu6 2652 cgsex2g 3482 cgsex4g 3483 cgsex4gOLD 3484 spc2egv 3554 rexopabb 5468 relop 5790 elinxp 5968 opreuopreu 7966 en3 9165 en4 9166 addsrpr 10966 mulsrpr 10967 hash2prde 14377 hash3tpde 14400 pmtrrn2 19373 umgredg 29117 umgr2wlkon 29929 trsp2cyc 33090 acycgrsubgr 35200 satfvsucsuc 35407 fmla0xp 35425 fundmpss 35809 pellexlem5 42872 ax6e2eq 44596 fnchoice 45072 fzisoeu 45347 stoweidlem35 46079 stoweidlem60 46104 or2expropbi 47071 ich2exprop 47508 grlimprclnbgr 48033 |
| Copyright terms: Public domain | W3C validator |