MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfwe2 Structured version   Visualization version   GIF version

Theorem dfwe2 7757
Description: Alternate definition of well-ordering. Definition 6.24(2) of [TakeutiZaring] p. 30. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
dfwe2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝐴,𝑦

Proof of Theorem dfwe2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-we 5632 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
2 df-so 5588 . . . 4 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
3 simpr 485 . . . . 5 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
4 ax-1 6 . . . . . . . . . . . . . . 15 (𝑥𝑅𝑧 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
54a1i 11 . . . . . . . . . . . . . 14 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥𝑅𝑧 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
6 fr2nr 5653 . . . . . . . . . . . . . . . . 17 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ¬ (𝑥𝑅𝑦𝑦𝑅𝑥))
763adantr3 1171 . . . . . . . . . . . . . . . 16 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ¬ (𝑥𝑅𝑦𝑦𝑅𝑥))
8 breq2 5151 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
98anbi2d 629 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧)))
109notbid 317 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (¬ (𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ¬ (𝑥𝑅𝑦𝑦𝑅𝑧)))
117, 10syl5ibcom 244 . . . . . . . . . . . . . . 15 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥 = 𝑧 → ¬ (𝑥𝑅𝑦𝑦𝑅𝑧)))
12 pm2.21 123 . . . . . . . . . . . . . . 15 (¬ (𝑥𝑅𝑦𝑦𝑅𝑧) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1311, 12syl6 35 . . . . . . . . . . . . . 14 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥 = 𝑧 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
14 fr3nr 7755 . . . . . . . . . . . . . . . . 17 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ¬ (𝑥𝑅𝑦𝑦𝑅𝑧𝑧𝑅𝑥))
15 df-3an 1089 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑅𝑦𝑦𝑅𝑧𝑧𝑅𝑥) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑧) ∧ 𝑧𝑅𝑥))
1615biimpri 227 . . . . . . . . . . . . . . . . . 18 (((𝑥𝑅𝑦𝑦𝑅𝑧) ∧ 𝑧𝑅𝑥) → (𝑥𝑅𝑦𝑦𝑅𝑧𝑧𝑅𝑥))
1716ancoms 459 . . . . . . . . . . . . . . . . 17 ((𝑧𝑅𝑥 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → (𝑥𝑅𝑦𝑦𝑅𝑧𝑧𝑅𝑥))
1814, 17nsyl 140 . . . . . . . . . . . . . . . 16 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ¬ (𝑧𝑅𝑥 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)))
1918pm2.21d 121 . . . . . . . . . . . . . . 15 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑧𝑅𝑥 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → 𝑥𝑅𝑧))
2019expd 416 . . . . . . . . . . . . . 14 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑧𝑅𝑥 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
215, 13, 203jaod 1428 . . . . . . . . . . . . 13 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
22 frirr 5652 . . . . . . . . . . . . . 14 ((𝑅 Fr 𝐴𝑥𝐴) → ¬ 𝑥𝑅𝑥)
23223ad2antr1 1188 . . . . . . . . . . . . 13 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ¬ 𝑥𝑅𝑥)
2421, 23jctild 526 . . . . . . . . . . . 12 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
2524ex 413 . . . . . . . . . . 11 (𝑅 Fr 𝐴 → ((𝑥𝐴𝑦𝐴𝑧𝐴) → ((𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))))
2625a2d 29 . . . . . . . . . 10 (𝑅 Fr 𝐴 → (((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)) → ((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))))
2726alimdv 1919 . . . . . . . . 9 (𝑅 Fr 𝐴 → (∀𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)) → ∀𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))))
28272alimdv 1921 . . . . . . . 8 (𝑅 Fr 𝐴 → (∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)) → ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))))
29 r3al 3196 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)))
30 r3al 3196 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
3128, 29, 303imtr4g 295 . . . . . . 7 (𝑅 Fr 𝐴 → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) → ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
32 breq2 5151 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑥𝑅𝑦𝑥𝑅𝑧))
33 equequ2 2029 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
34 breq1 5150 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
3532, 33, 343orbi123d 1435 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)))
3635ralidmw 4506 . . . . . . . . 9 (∀𝑦𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
3735cbvralvw 3234 . . . . . . . . . 10 (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥))
3837ralbii 3093 . . . . . . . . 9 (∀𝑦𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥))
3936, 38bitr3i 276 . . . . . . . 8 (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥))
4039ralbii 3093 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥))
41 df-po 5587 . . . . . . 7 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
4231, 40, 413imtr4g 295 . . . . . 6 (𝑅 Fr 𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → 𝑅 Po 𝐴))
4342ancrd 552 . . . . 5 (𝑅 Fr 𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))))
443, 43impbid2 225 . . . 4 (𝑅 Fr 𝐴 → ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
452, 44bitrid 282 . . 3 (𝑅 Fr 𝐴 → (𝑅 Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
4645pm5.32i 575 . 2 ((𝑅 Fr 𝐴𝑅 Or 𝐴) ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
471, 46bitri 274 1 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1086  w3a 1087  wal 1539  wcel 2106  wral 3061   class class class wbr 5147   Po wpo 5585   Or wor 5586   Fr wfr 5627   We wwe 5629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-br 5148  df-po 5587  df-so 5588  df-fr 5630  df-we 5632
This theorem is referenced by:  epweonALT  7759  f1oweALT  7955  dford2  9611  fpwwe2lem11  10632  fpwwe2lem12  10633  dfon2  34752  fnwe2  41780
  Copyright terms: Public domain W3C validator