MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfwe2 Structured version   Visualization version   GIF version

Theorem dfwe2 7496
Description: Alternate definition of well-ordering. Definition 6.24(2) of [TakeutiZaring] p. 30. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
dfwe2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝐴,𝑦

Proof of Theorem dfwe2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-we 5516 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
2 df-so 5475 . . . 4 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
3 simpr 487 . . . . 5 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
4 ax-1 6 . . . . . . . . . . . . . . 15 (𝑥𝑅𝑧 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
54a1i 11 . . . . . . . . . . . . . 14 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥𝑅𝑧 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
6 fr2nr 5533 . . . . . . . . . . . . . . . . 17 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ¬ (𝑥𝑅𝑦𝑦𝑅𝑥))
763adantr3 1167 . . . . . . . . . . . . . . . 16 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ¬ (𝑥𝑅𝑦𝑦𝑅𝑥))
8 breq2 5070 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
98anbi2d 630 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧)))
109notbid 320 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (¬ (𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ¬ (𝑥𝑅𝑦𝑦𝑅𝑧)))
117, 10syl5ibcom 247 . . . . . . . . . . . . . . 15 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥 = 𝑧 → ¬ (𝑥𝑅𝑦𝑦𝑅𝑧)))
12 pm2.21 123 . . . . . . . . . . . . . . 15 (¬ (𝑥𝑅𝑦𝑦𝑅𝑧) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1311, 12syl6 35 . . . . . . . . . . . . . 14 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥 = 𝑧 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
14 fr3nr 7494 . . . . . . . . . . . . . . . . 17 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ¬ (𝑥𝑅𝑦𝑦𝑅𝑧𝑧𝑅𝑥))
15 df-3an 1085 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑅𝑦𝑦𝑅𝑧𝑧𝑅𝑥) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑧) ∧ 𝑧𝑅𝑥))
1615biimpri 230 . . . . . . . . . . . . . . . . . 18 (((𝑥𝑅𝑦𝑦𝑅𝑧) ∧ 𝑧𝑅𝑥) → (𝑥𝑅𝑦𝑦𝑅𝑧𝑧𝑅𝑥))
1716ancoms 461 . . . . . . . . . . . . . . . . 17 ((𝑧𝑅𝑥 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → (𝑥𝑅𝑦𝑦𝑅𝑧𝑧𝑅𝑥))
1814, 17nsyl 142 . . . . . . . . . . . . . . . 16 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ¬ (𝑧𝑅𝑥 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)))
1918pm2.21d 121 . . . . . . . . . . . . . . 15 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑧𝑅𝑥 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → 𝑥𝑅𝑧))
2019expd 418 . . . . . . . . . . . . . 14 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑧𝑅𝑥 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
215, 13, 203jaod 1424 . . . . . . . . . . . . 13 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
22 frirr 5532 . . . . . . . . . . . . . 14 ((𝑅 Fr 𝐴𝑥𝐴) → ¬ 𝑥𝑅𝑥)
23223ad2antr1 1184 . . . . . . . . . . . . 13 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ¬ 𝑥𝑅𝑥)
2421, 23jctild 528 . . . . . . . . . . . 12 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
2524ex 415 . . . . . . . . . . 11 (𝑅 Fr 𝐴 → ((𝑥𝐴𝑦𝐴𝑧𝐴) → ((𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))))
2625a2d 29 . . . . . . . . . 10 (𝑅 Fr 𝐴 → (((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)) → ((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))))
2726alimdv 1917 . . . . . . . . 9 (𝑅 Fr 𝐴 → (∀𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)) → ∀𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))))
28272alimdv 1919 . . . . . . . 8 (𝑅 Fr 𝐴 → (∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)) → ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))))
29 r3al 3202 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)))
30 r3al 3202 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
3128, 29, 303imtr4g 298 . . . . . . 7 (𝑅 Fr 𝐴 → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) → ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
32 ralidm 4455 . . . . . . . . 9 (∀𝑦𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
33 breq2 5070 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑥𝑅𝑦𝑥𝑅𝑧))
34 equequ2 2033 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
35 breq1 5069 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
3633, 34, 353orbi123d 1431 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)))
3736cbvralvw 3449 . . . . . . . . . 10 (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥))
3837ralbii 3165 . . . . . . . . 9 (∀𝑦𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥))
3932, 38bitr3i 279 . . . . . . . 8 (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥))
4039ralbii 3165 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥))
41 df-po 5474 . . . . . . 7 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
4231, 40, 413imtr4g 298 . . . . . 6 (𝑅 Fr 𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → 𝑅 Po 𝐴))
4342ancrd 554 . . . . 5 (𝑅 Fr 𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))))
443, 43impbid2 228 . . . 4 (𝑅 Fr 𝐴 → ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
452, 44syl5bb 285 . . 3 (𝑅 Fr 𝐴 → (𝑅 Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
4645pm5.32i 577 . 2 ((𝑅 Fr 𝐴𝑅 Or 𝐴) ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
471, 46bitri 277 1 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3o 1082  w3a 1083  wal 1535  wcel 2114  wral 3138   class class class wbr 5066   Po wpo 5472   Or wor 5473   Fr wfr 5511   We wwe 5513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-po 5474  df-so 5475  df-fr 5514  df-we 5516
This theorem is referenced by:  epweon  7497  f1oweALT  7673  dford2  9083  fpwwe2lem12  10063  fpwwe2lem13  10064  dfon2  33037  fnwe2  39673
  Copyright terms: Public domain W3C validator