Step | Hyp | Ref
| Expression |
1 | | df-we 5546 |
. 2
⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
2 | | df-so 5504 |
. . . 4
⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
3 | | simpr 485 |
. . . . 5
⊢ ((𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
4 | | ax-1 6 |
. . . . . . . . . . . . . . 15
⊢ (𝑥𝑅𝑧 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
5 | 4 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 Fr 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥𝑅𝑧 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
6 | | fr2nr 5567 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 Fr 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ¬ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) |
7 | 6 | 3adantr3 1170 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 Fr 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ¬ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) |
8 | | breq2 5078 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝑧)) |
9 | 8 | anbi2d 629 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) |
10 | 9 | notbid 318 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → (¬ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) ↔ ¬ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) |
11 | 7, 10 | syl5ibcom 244 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 Fr 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥 = 𝑧 → ¬ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) |
12 | | pm2.21 123 |
. . . . . . . . . . . . . . 15
⊢ (¬
(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
13 | 11, 12 | syl6 35 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 Fr 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥 = 𝑧 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
14 | | fr3nr 7622 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 Fr 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ¬ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧 ∧ 𝑧𝑅𝑥)) |
15 | | df-3an 1088 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧 ∧ 𝑧𝑅𝑥) ↔ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) ∧ 𝑧𝑅𝑥)) |
16 | 15 | biimpri 227 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) ∧ 𝑧𝑅𝑥) → (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧 ∧ 𝑧𝑅𝑥)) |
17 | 16 | ancoms 459 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧𝑅𝑥 ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧 ∧ 𝑧𝑅𝑥)) |
18 | 14, 17 | nsyl 140 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 Fr 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ¬ (𝑧𝑅𝑥 ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧))) |
19 | 18 | pm2.21d 121 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 Fr 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑧𝑅𝑥 ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧)) |
20 | 19 | expd 416 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 Fr 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑧𝑅𝑥 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
21 | 5, 13, 20 | 3jaod 1427 |
. . . . . . . . . . . . 13
⊢ ((𝑅 Fr 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧𝑅𝑥) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
22 | | frirr 5566 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 Fr 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) |
23 | 22 | 3ad2antr1 1187 |
. . . . . . . . . . . . 13
⊢ ((𝑅 Fr 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ¬ 𝑥𝑅𝑥) |
24 | 21, 23 | jctild 526 |
. . . . . . . . . . . 12
⊢ ((𝑅 Fr 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧𝑅𝑥) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
25 | 24 | ex 413 |
. . . . . . . . . . 11
⊢ (𝑅 Fr 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → ((𝑥𝑅𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧𝑅𝑥) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))))) |
26 | 25 | a2d 29 |
. . . . . . . . . 10
⊢ (𝑅 Fr 𝐴 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧𝑅𝑥)) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))))) |
27 | 26 | alimdv 1919 |
. . . . . . . . 9
⊢ (𝑅 Fr 𝐴 → (∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧𝑅𝑥)) → ∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))))) |
28 | 27 | 2alimdv 1921 |
. . . . . . . 8
⊢ (𝑅 Fr 𝐴 → (∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧𝑅𝑥)) → ∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))))) |
29 | | r3al 3119 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧𝑅𝑥) ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧𝑅𝑥))) |
30 | | r3al 3119 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
31 | 28, 29, 30 | 3imtr4g 296 |
. . . . . . 7
⊢ (𝑅 Fr 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧𝑅𝑥) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
32 | | breq2 5078 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝑥𝑅𝑦 ↔ 𝑥𝑅𝑧)) |
33 | | equequ2 2029 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) |
34 | | breq1 5077 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝑦𝑅𝑥 ↔ 𝑧𝑅𝑥)) |
35 | 32, 33, 34 | 3orbi123d 1434 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → ((𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ (𝑥𝑅𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧𝑅𝑥))) |
36 | 35 | ralidmw 4438 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
37 | 35 | cbvralvw 3383 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧𝑅𝑥)) |
38 | 37 | ralbii 3092 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧𝑅𝑥)) |
39 | 36, 38 | bitr3i 276 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧𝑅𝑥)) |
40 | 39 | ralbii 3092 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧𝑅𝑥)) |
41 | | df-po 5503 |
. . . . . . 7
⊢ (𝑅 Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
42 | 31, 40, 41 | 3imtr4g 296 |
. . . . . 6
⊢ (𝑅 Fr 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) → 𝑅 Po 𝐴)) |
43 | 42 | ancrd 552 |
. . . . 5
⊢ (𝑅 Fr 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) → (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)))) |
44 | 3, 43 | impbid2 225 |
. . . 4
⊢ (𝑅 Fr 𝐴 → ((𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
45 | 2, 44 | bitrid 282 |
. . 3
⊢ (𝑅 Fr 𝐴 → (𝑅 Or 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
46 | 45 | pm5.32i 575 |
. 2
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
47 | 1, 46 | bitri 274 |
1
⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |