Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.48lem Structured version   Visualization version   GIF version

Theorem tz7.48lem 8069
 Description: A way of showing an ordinal function is one-to-one. (Contributed by NM, 9-Feb-1997.)
Hypothesis
Ref Expression
tz7.48.1 𝐹 Fn On
Assertion
Ref Expression
tz7.48lem ((𝐴 ⊆ On ∧ ∀𝑥𝐴𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)) → Fun (𝐹𝐴))
Distinct variable groups:   𝑦,𝐴,𝑥   𝑥,𝐹,𝑦   𝑥,𝐴

Proof of Theorem tz7.48lem
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r2al 3199 . . . . . . 7 (∀𝑥𝐴𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦)))
2 simpl 485 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐴) → 𝑥𝐴)
32anim1i 616 . . . . . . . . . 10 (((𝑥𝐴𝑦𝐴) ∧ 𝑦𝑥) → (𝑥𝐴𝑦𝑥))
43imim1i 63 . . . . . . . . 9 (((𝑥𝐴𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦)) → (((𝑥𝐴𝑦𝐴) ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦)))
54expd 418 . . . . . . . 8 (((𝑥𝐴𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦)) → ((𝑥𝐴𝑦𝐴) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))
652alimi 1806 . . . . . . 7 (∀𝑥𝑦((𝑥𝐴𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦)) → ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))
71, 6sylbi 219 . . . . . 6 (∀𝑥𝐴𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) → ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))
8 r2al 3199 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))
97, 8sylibr 236 . . . . 5 (∀𝑥𝐴𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) → ∀𝑥𝐴𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))
10 elequ1 2114 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑦𝑥𝑤𝑥))
11 fveq2 6663 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (𝐹𝑦) = (𝐹𝑤))
1211eqeq2d 2830 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝐹𝑥) = (𝐹𝑤)))
1312notbid 320 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (¬ (𝐹𝑥) = (𝐹𝑦) ↔ ¬ (𝐹𝑥) = (𝐹𝑤)))
1410, 13imbi12d 347 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)) ↔ (𝑤𝑥 → ¬ (𝐹𝑥) = (𝐹𝑤))))
1514cbvralvw 3448 . . . . . . . . . 10 (∀𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)) ↔ ∀𝑤𝐴 (𝑤𝑥 → ¬ (𝐹𝑥) = (𝐹𝑤)))
1615ralbii 3163 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)) ↔ ∀𝑥𝐴𝑤𝐴 (𝑤𝑥 → ¬ (𝐹𝑥) = (𝐹𝑤)))
17 elequ2 2122 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑤𝑥𝑤𝑧))
18 fveqeq2 6672 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝐹𝑥) = (𝐹𝑤) ↔ (𝐹𝑧) = (𝐹𝑤)))
1918notbid 320 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (¬ (𝐹𝑥) = (𝐹𝑤) ↔ ¬ (𝐹𝑧) = (𝐹𝑤)))
2017, 19imbi12d 347 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝑤𝑥 → ¬ (𝐹𝑥) = (𝐹𝑤)) ↔ (𝑤𝑧 → ¬ (𝐹𝑧) = (𝐹𝑤))))
2120ralbidv 3195 . . . . . . . . . 10 (𝑥 = 𝑧 → (∀𝑤𝐴 (𝑤𝑥 → ¬ (𝐹𝑥) = (𝐹𝑤)) ↔ ∀𝑤𝐴 (𝑤𝑧 → ¬ (𝐹𝑧) = (𝐹𝑤))))
2221cbvralvw 3448 . . . . . . . . 9 (∀𝑥𝐴𝑤𝐴 (𝑤𝑥 → ¬ (𝐹𝑥) = (𝐹𝑤)) ↔ ∀𝑧𝐴𝑤𝐴 (𝑤𝑧 → ¬ (𝐹𝑧) = (𝐹𝑤)))
23 elequ1 2114 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → (𝑤𝑧𝑥𝑧))
24 fveq2 6663 . . . . . . . . . . . . . . 15 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
2524eqeq2d 2830 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐹𝑧) = (𝐹𝑥)))
2625notbid 320 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → (¬ (𝐹𝑧) = (𝐹𝑤) ↔ ¬ (𝐹𝑧) = (𝐹𝑥)))
2723, 26imbi12d 347 . . . . . . . . . . . 12 (𝑤 = 𝑥 → ((𝑤𝑧 → ¬ (𝐹𝑧) = (𝐹𝑤)) ↔ (𝑥𝑧 → ¬ (𝐹𝑧) = (𝐹𝑥))))
2827cbvralvw 3448 . . . . . . . . . . 11 (∀𝑤𝐴 (𝑤𝑧 → ¬ (𝐹𝑧) = (𝐹𝑤)) ↔ ∀𝑥𝐴 (𝑥𝑧 → ¬ (𝐹𝑧) = (𝐹𝑥)))
2928ralbii 3163 . . . . . . . . . 10 (∀𝑧𝐴𝑤𝐴 (𝑤𝑧 → ¬ (𝐹𝑧) = (𝐹𝑤)) ↔ ∀𝑧𝐴𝑥𝐴 (𝑥𝑧 → ¬ (𝐹𝑧) = (𝐹𝑥)))
30 elequ2 2122 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (𝑥𝑧𝑥𝑦))
31 fveqeq2 6672 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝐹𝑧) = (𝐹𝑥) ↔ (𝐹𝑦) = (𝐹𝑥)))
3231notbid 320 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (¬ (𝐹𝑧) = (𝐹𝑥) ↔ ¬ (𝐹𝑦) = (𝐹𝑥)))
3330, 32imbi12d 347 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((𝑥𝑧 → ¬ (𝐹𝑧) = (𝐹𝑥)) ↔ (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥))))
3433ralbidv 3195 . . . . . . . . . . 11 (𝑧 = 𝑦 → (∀𝑥𝐴 (𝑥𝑧 → ¬ (𝐹𝑧) = (𝐹𝑥)) ↔ ∀𝑥𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥))))
3534cbvralvw 3448 . . . . . . . . . 10 (∀𝑧𝐴𝑥𝐴 (𝑥𝑧 → ¬ (𝐹𝑧) = (𝐹𝑥)) ↔ ∀𝑦𝐴𝑥𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)))
3629, 35bitri 277 . . . . . . . . 9 (∀𝑧𝐴𝑤𝐴 (𝑤𝑧 → ¬ (𝐹𝑧) = (𝐹𝑤)) ↔ ∀𝑦𝐴𝑥𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)))
3716, 22, 363bitri 299 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)) ↔ ∀𝑦𝐴𝑥𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)))
38 ralcom2w 3361 . . . . . . . 8 (∀𝑦𝐴𝑥𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)))
3937, 38sylbi 219 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)))
4039ancri 552 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ ∀𝑥𝐴𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))
41 r19.26-2 3169 . . . . . 6 (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))) ↔ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ ∀𝑥𝐴𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))
4240, 41sylibr 236 . . . . 5 (∀𝑥𝐴𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)) → ∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))
439, 42syl 17 . . . 4 (∀𝑥𝐴𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) → ∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))
44 fvres 6682 . . . . . . . . . . 11 (𝑥𝐴 → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
45 fvres 6682 . . . . . . . . . . 11 (𝑦𝐴 → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
4644, 45eqeqan12d 2836 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) → (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) ↔ (𝐹𝑥) = (𝐹𝑦)))
4746ad2antrl 726 . . . . . . . . 9 ((𝐴 ⊆ On ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))) → (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) ↔ (𝐹𝑥) = (𝐹𝑦)))
48 ssel 3959 . . . . . . . . . . . 12 (𝐴 ⊆ On → (𝑥𝐴𝑥 ∈ On))
49 ssel 3959 . . . . . . . . . . . 12 (𝐴 ⊆ On → (𝑦𝐴𝑦 ∈ On))
5048, 49anim12d 610 . . . . . . . . . . 11 (𝐴 ⊆ On → ((𝑥𝐴𝑦𝐴) → (𝑥 ∈ On ∧ 𝑦 ∈ On)))
51 pm3.48 959 . . . . . . . . . . . . . 14 (((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))) → ((𝑥𝑦𝑦𝑥) → (¬ (𝐹𝑦) = (𝐹𝑥) ∨ ¬ (𝐹𝑥) = (𝐹𝑦))))
52 oridm 900 . . . . . . . . . . . . . . 15 ((¬ (𝐹𝑥) = (𝐹𝑦) ∨ ¬ (𝐹𝑥) = (𝐹𝑦)) ↔ ¬ (𝐹𝑥) = (𝐹𝑦))
53 eqcom 2826 . . . . . . . . . . . . . . . . 17 ((𝐹𝑥) = (𝐹𝑦) ↔ (𝐹𝑦) = (𝐹𝑥))
5453notbii 322 . . . . . . . . . . . . . . . 16 (¬ (𝐹𝑥) = (𝐹𝑦) ↔ ¬ (𝐹𝑦) = (𝐹𝑥))
5554orbi1i 909 . . . . . . . . . . . . . . 15 ((¬ (𝐹𝑥) = (𝐹𝑦) ∨ ¬ (𝐹𝑥) = (𝐹𝑦)) ↔ (¬ (𝐹𝑦) = (𝐹𝑥) ∨ ¬ (𝐹𝑥) = (𝐹𝑦)))
5652, 55bitr3i 279 . . . . . . . . . . . . . 14 (¬ (𝐹𝑥) = (𝐹𝑦) ↔ (¬ (𝐹𝑦) = (𝐹𝑥) ∨ ¬ (𝐹𝑥) = (𝐹𝑦)))
5751, 56syl6ibr 254 . . . . . . . . . . . . 13 (((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))) → ((𝑥𝑦𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦)))
5857con2d 136 . . . . . . . . . . . 12 (((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))) → ((𝐹𝑥) = (𝐹𝑦) → ¬ (𝑥𝑦𝑦𝑥)))
59 eloni 6194 . . . . . . . . . . . . 13 (𝑥 ∈ On → Ord 𝑥)
60 eloni 6194 . . . . . . . . . . . . 13 (𝑦 ∈ On → Ord 𝑦)
61 ordtri3 6220 . . . . . . . . . . . . . 14 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 = 𝑦 ↔ ¬ (𝑥𝑦𝑦𝑥)))
6261biimprd 250 . . . . . . . . . . . . 13 ((Ord 𝑥 ∧ Ord 𝑦) → (¬ (𝑥𝑦𝑦𝑥) → 𝑥 = 𝑦))
6359, 60, 62syl2an 597 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (¬ (𝑥𝑦𝑦𝑥) → 𝑥 = 𝑦))
6458, 63syl9r 78 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6550, 64syl6 35 . . . . . . . . . 10 (𝐴 ⊆ On → ((𝑥𝐴𝑦𝐴) → (((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
6665imp32 421 . . . . . . . . 9 ((𝐴 ⊆ On ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
6747, 66sylbid 242 . . . . . . . 8 ((𝐴 ⊆ On ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))) → (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦))
6867exp32 423 . . . . . . 7 (𝐴 ⊆ On → ((𝑥𝐴𝑦𝐴) → (((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))) → (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦))))
6968a2d 29 . . . . . 6 (𝐴 ⊆ On → (((𝑥𝐴𝑦𝐴) → ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))) → ((𝑥𝐴𝑦𝐴) → (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦))))
70692alimdv 1912 . . . . 5 (𝐴 ⊆ On → (∀𝑥𝑦((𝑥𝐴𝑦𝐴) → ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))) → ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦))))
71 r2al 3199 . . . . 5 (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))))
72 r2al 3199 . . . . 5 (∀𝑥𝐴𝑦𝐴 (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦)))
7370, 71, 723imtr4g 298 . . . 4 (𝐴 ⊆ On → (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))) → ∀𝑥𝐴𝑦𝐴 (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦)))
7443, 73syl5 34 . . 3 (𝐴 ⊆ On → (∀𝑥𝐴𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) → ∀𝑥𝐴𝑦𝐴 (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦)))
7574imdistani 571 . 2 ((𝐴 ⊆ On ∧ ∀𝑥𝐴𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)) → (𝐴 ⊆ On ∧ ∀𝑥𝐴𝑦𝐴 (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦)))
76 tz7.48.1 . . . 4 𝐹 Fn On
77 fnssres 6463 . . . 4 ((𝐹 Fn On ∧ 𝐴 ⊆ On) → (𝐹𝐴) Fn 𝐴)
7876, 77mpan 688 . . 3 (𝐴 ⊆ On → (𝐹𝐴) Fn 𝐴)
79 dffn2 6509 . . . 4 ((𝐹𝐴) Fn 𝐴 ↔ (𝐹𝐴):𝐴⟶V)
80 dff13 7005 . . . . . 6 ((𝐹𝐴):𝐴1-1→V ↔ ((𝐹𝐴):𝐴⟶V ∧ ∀𝑥𝐴𝑦𝐴 (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦)))
81 df-f1 6353 . . . . . 6 ((𝐹𝐴):𝐴1-1→V ↔ ((𝐹𝐴):𝐴⟶V ∧ Fun (𝐹𝐴)))
8280, 81bitr3i 279 . . . . 5 (((𝐹𝐴):𝐴⟶V ∧ ∀𝑥𝐴𝑦𝐴 (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦)) ↔ ((𝐹𝐴):𝐴⟶V ∧ Fun (𝐹𝐴)))
8382simprbi 499 . . . 4 (((𝐹𝐴):𝐴⟶V ∧ ∀𝑥𝐴𝑦𝐴 (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦)) → Fun (𝐹𝐴))
8479, 83sylanb 583 . . 3 (((𝐹𝐴) Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦)) → Fun (𝐹𝐴))
8578, 84sylan 582 . 2 ((𝐴 ⊆ On ∧ ∀𝑥𝐴𝑦𝐴 (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦)) → Fun (𝐹𝐴))
8675, 85syl 17 1 ((𝐴 ⊆ On ∧ ∀𝑥𝐴𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)) → Fun (𝐹𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398   ∨ wo 843  ∀wal 1528   = wceq 1530   ∈ wcel 2107  ∀wral 3136  Vcvv 3493   ⊆ wss 3934  ◡ccnv 5547   ↾ cres 5550  Ord word 6183  Oncon0 6184  Fun wfun 6342   Fn wfn 6343  ⟶wf 6344  –1-1→wf1 6345  ‘cfv 6348 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-res 5560  df-ord 6187  df-on 6188  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fv 6356 This theorem is referenced by:  tz7.48-2  8070  tz7.49  8073  zorn2lem4  9913
 Copyright terms: Public domain W3C validator