MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.48lem Structured version   Visualization version   GIF version

Theorem tz7.48lem 8462
Description: A way of showing an ordinal function is one-to-one. (Contributed by NM, 9-Feb-1997.)
Hypothesis
Ref Expression
tz7.48.1 𝐹 Fn On
Assertion
Ref Expression
tz7.48lem ((𝐴 ⊆ On ∧ ∀𝑥𝐴𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)) → Fun (𝐹𝐴))
Distinct variable groups:   𝑦,𝐴,𝑥   𝑥,𝐹,𝑦   𝑥,𝐴

Proof of Theorem tz7.48lem
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r2al 3184 . . . . . . 7 (∀𝑥𝐴𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦)))
2 simpl 481 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐴) → 𝑥𝐴)
32anim1i 613 . . . . . . . . . 10 (((𝑥𝐴𝑦𝐴) ∧ 𝑦𝑥) → (𝑥𝐴𝑦𝑥))
43imim1i 63 . . . . . . . . 9 (((𝑥𝐴𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦)) → (((𝑥𝐴𝑦𝐴) ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦)))
54expd 414 . . . . . . . 8 (((𝑥𝐴𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦)) → ((𝑥𝐴𝑦𝐴) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))
652alimi 1806 . . . . . . 7 (∀𝑥𝑦((𝑥𝐴𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦)) → ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))
71, 6sylbi 216 . . . . . 6 (∀𝑥𝐴𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) → ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))
8 r2al 3184 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))
97, 8sylibr 233 . . . . 5 (∀𝑥𝐴𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) → ∀𝑥𝐴𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))
10 elequ1 2105 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑦𝑥𝑤𝑥))
11 fveq2 6896 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (𝐹𝑦) = (𝐹𝑤))
1211eqeq2d 2736 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝐹𝑥) = (𝐹𝑤)))
1312notbid 317 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (¬ (𝐹𝑥) = (𝐹𝑦) ↔ ¬ (𝐹𝑥) = (𝐹𝑤)))
1410, 13imbi12d 343 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)) ↔ (𝑤𝑥 → ¬ (𝐹𝑥) = (𝐹𝑤))))
1514cbvralvw 3224 . . . . . . . . . 10 (∀𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)) ↔ ∀𝑤𝐴 (𝑤𝑥 → ¬ (𝐹𝑥) = (𝐹𝑤)))
1615ralbii 3082 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)) ↔ ∀𝑥𝐴𝑤𝐴 (𝑤𝑥 → ¬ (𝐹𝑥) = (𝐹𝑤)))
17 elequ2 2113 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑤𝑥𝑤𝑧))
18 fveqeq2 6905 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝐹𝑥) = (𝐹𝑤) ↔ (𝐹𝑧) = (𝐹𝑤)))
1918notbid 317 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (¬ (𝐹𝑥) = (𝐹𝑤) ↔ ¬ (𝐹𝑧) = (𝐹𝑤)))
2017, 19imbi12d 343 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝑤𝑥 → ¬ (𝐹𝑥) = (𝐹𝑤)) ↔ (𝑤𝑧 → ¬ (𝐹𝑧) = (𝐹𝑤))))
2120ralbidv 3167 . . . . . . . . . 10 (𝑥 = 𝑧 → (∀𝑤𝐴 (𝑤𝑥 → ¬ (𝐹𝑥) = (𝐹𝑤)) ↔ ∀𝑤𝐴 (𝑤𝑧 → ¬ (𝐹𝑧) = (𝐹𝑤))))
2221cbvralvw 3224 . . . . . . . . 9 (∀𝑥𝐴𝑤𝐴 (𝑤𝑥 → ¬ (𝐹𝑥) = (𝐹𝑤)) ↔ ∀𝑧𝐴𝑤𝐴 (𝑤𝑧 → ¬ (𝐹𝑧) = (𝐹𝑤)))
23 elequ1 2105 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → (𝑤𝑧𝑥𝑧))
24 fveq2 6896 . . . . . . . . . . . . . . 15 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
2524eqeq2d 2736 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐹𝑧) = (𝐹𝑥)))
2625notbid 317 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → (¬ (𝐹𝑧) = (𝐹𝑤) ↔ ¬ (𝐹𝑧) = (𝐹𝑥)))
2723, 26imbi12d 343 . . . . . . . . . . . 12 (𝑤 = 𝑥 → ((𝑤𝑧 → ¬ (𝐹𝑧) = (𝐹𝑤)) ↔ (𝑥𝑧 → ¬ (𝐹𝑧) = (𝐹𝑥))))
2827cbvralvw 3224 . . . . . . . . . . 11 (∀𝑤𝐴 (𝑤𝑧 → ¬ (𝐹𝑧) = (𝐹𝑤)) ↔ ∀𝑥𝐴 (𝑥𝑧 → ¬ (𝐹𝑧) = (𝐹𝑥)))
2928ralbii 3082 . . . . . . . . . 10 (∀𝑧𝐴𝑤𝐴 (𝑤𝑧 → ¬ (𝐹𝑧) = (𝐹𝑤)) ↔ ∀𝑧𝐴𝑥𝐴 (𝑥𝑧 → ¬ (𝐹𝑧) = (𝐹𝑥)))
30 elequ2 2113 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (𝑥𝑧𝑥𝑦))
31 fveqeq2 6905 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝐹𝑧) = (𝐹𝑥) ↔ (𝐹𝑦) = (𝐹𝑥)))
3231notbid 317 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (¬ (𝐹𝑧) = (𝐹𝑥) ↔ ¬ (𝐹𝑦) = (𝐹𝑥)))
3330, 32imbi12d 343 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((𝑥𝑧 → ¬ (𝐹𝑧) = (𝐹𝑥)) ↔ (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥))))
3433ralbidv 3167 . . . . . . . . . . 11 (𝑧 = 𝑦 → (∀𝑥𝐴 (𝑥𝑧 → ¬ (𝐹𝑧) = (𝐹𝑥)) ↔ ∀𝑥𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥))))
3534cbvralvw 3224 . . . . . . . . . 10 (∀𝑧𝐴𝑥𝐴 (𝑥𝑧 → ¬ (𝐹𝑧) = (𝐹𝑥)) ↔ ∀𝑦𝐴𝑥𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)))
3629, 35bitri 274 . . . . . . . . 9 (∀𝑧𝐴𝑤𝐴 (𝑤𝑧 → ¬ (𝐹𝑧) = (𝐹𝑤)) ↔ ∀𝑦𝐴𝑥𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)))
3716, 22, 363bitri 296 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)) ↔ ∀𝑦𝐴𝑥𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)))
38 ralcom 3276 . . . . . . . . 9 (∀𝑦𝐴𝑥𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)))
3938biimpi 215 . . . . . . . 8 (∀𝑦𝐴𝑥𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)))
4037, 39sylbi 216 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)))
4140ancri 548 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ ∀𝑥𝐴𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))
42 r19.26-2 3127 . . . . . 6 (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))) ↔ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ ∀𝑥𝐴𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))
4341, 42sylibr 233 . . . . 5 (∀𝑥𝐴𝑦𝐴 (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)) → ∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))
449, 43syl 17 . . . 4 (∀𝑥𝐴𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) → ∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))
45 fvres 6915 . . . . . . . . . . 11 (𝑥𝐴 → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
46 fvres 6915 . . . . . . . . . . 11 (𝑦𝐴 → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
4745, 46eqeqan12d 2739 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) → (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) ↔ (𝐹𝑥) = (𝐹𝑦)))
4847ad2antrl 726 . . . . . . . . 9 ((𝐴 ⊆ On ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))) → (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) ↔ (𝐹𝑥) = (𝐹𝑦)))
49 ssel 3970 . . . . . . . . . . . 12 (𝐴 ⊆ On → (𝑥𝐴𝑥 ∈ On))
50 ssel 3970 . . . . . . . . . . . 12 (𝐴 ⊆ On → (𝑦𝐴𝑦 ∈ On))
5149, 50anim12d 607 . . . . . . . . . . 11 (𝐴 ⊆ On → ((𝑥𝐴𝑦𝐴) → (𝑥 ∈ On ∧ 𝑦 ∈ On)))
52 pm3.48 961 . . . . . . . . . . . . . 14 (((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))) → ((𝑥𝑦𝑦𝑥) → (¬ (𝐹𝑦) = (𝐹𝑥) ∨ ¬ (𝐹𝑥) = (𝐹𝑦))))
53 oridm 902 . . . . . . . . . . . . . . 15 ((¬ (𝐹𝑥) = (𝐹𝑦) ∨ ¬ (𝐹𝑥) = (𝐹𝑦)) ↔ ¬ (𝐹𝑥) = (𝐹𝑦))
54 eqcom 2732 . . . . . . . . . . . . . . . . 17 ((𝐹𝑥) = (𝐹𝑦) ↔ (𝐹𝑦) = (𝐹𝑥))
5554notbii 319 . . . . . . . . . . . . . . . 16 (¬ (𝐹𝑥) = (𝐹𝑦) ↔ ¬ (𝐹𝑦) = (𝐹𝑥))
5655orbi1i 911 . . . . . . . . . . . . . . 15 ((¬ (𝐹𝑥) = (𝐹𝑦) ∨ ¬ (𝐹𝑥) = (𝐹𝑦)) ↔ (¬ (𝐹𝑦) = (𝐹𝑥) ∨ ¬ (𝐹𝑥) = (𝐹𝑦)))
5753, 56bitr3i 276 . . . . . . . . . . . . . 14 (¬ (𝐹𝑥) = (𝐹𝑦) ↔ (¬ (𝐹𝑦) = (𝐹𝑥) ∨ ¬ (𝐹𝑥) = (𝐹𝑦)))
5852, 57imbitrrdi 251 . . . . . . . . . . . . 13 (((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))) → ((𝑥𝑦𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦)))
5958con2d 134 . . . . . . . . . . . 12 (((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))) → ((𝐹𝑥) = (𝐹𝑦) → ¬ (𝑥𝑦𝑦𝑥)))
60 eloni 6381 . . . . . . . . . . . . 13 (𝑥 ∈ On → Ord 𝑥)
61 eloni 6381 . . . . . . . . . . . . 13 (𝑦 ∈ On → Ord 𝑦)
62 ordtri3 6407 . . . . . . . . . . . . . 14 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 = 𝑦 ↔ ¬ (𝑥𝑦𝑦𝑥)))
6362biimprd 247 . . . . . . . . . . . . 13 ((Ord 𝑥 ∧ Ord 𝑦) → (¬ (𝑥𝑦𝑦𝑥) → 𝑥 = 𝑦))
6460, 61, 63syl2an 594 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (¬ (𝑥𝑦𝑦𝑥) → 𝑥 = 𝑦))
6559, 64syl9r 78 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6651, 65syl6 35 . . . . . . . . . 10 (𝐴 ⊆ On → ((𝑥𝐴𝑦𝐴) → (((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
6766imp32 417 . . . . . . . . 9 ((𝐴 ⊆ On ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
6848, 67sylbid 239 . . . . . . . 8 ((𝐴 ⊆ On ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))) → (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦))
6968exp32 419 . . . . . . 7 (𝐴 ⊆ On → ((𝑥𝐴𝑦𝐴) → (((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))) → (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦))))
7069a2d 29 . . . . . 6 (𝐴 ⊆ On → (((𝑥𝐴𝑦𝐴) → ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))) → ((𝑥𝐴𝑦𝐴) → (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦))))
71702alimdv 1913 . . . . 5 (𝐴 ⊆ On → (∀𝑥𝑦((𝑥𝐴𝑦𝐴) → ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))) → ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦))))
72 r2al 3184 . . . . 5 (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))))
73 r2al 3184 . . . . 5 (∀𝑥𝐴𝑦𝐴 (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦)))
7471, 72, 733imtr4g 295 . . . 4 (𝐴 ⊆ On → (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ¬ (𝐹𝑦) = (𝐹𝑥)) ∧ (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))) → ∀𝑥𝐴𝑦𝐴 (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦)))
7544, 74syl5 34 . . 3 (𝐴 ⊆ On → (∀𝑥𝐴𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) → ∀𝑥𝐴𝑦𝐴 (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦)))
7675imdistani 567 . 2 ((𝐴 ⊆ On ∧ ∀𝑥𝐴𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)) → (𝐴 ⊆ On ∧ ∀𝑥𝐴𝑦𝐴 (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦)))
77 tz7.48.1 . . . 4 𝐹 Fn On
78 fnssres 6679 . . . 4 ((𝐹 Fn On ∧ 𝐴 ⊆ On) → (𝐹𝐴) Fn 𝐴)
7977, 78mpan 688 . . 3 (𝐴 ⊆ On → (𝐹𝐴) Fn 𝐴)
80 dffn2 6725 . . . 4 ((𝐹𝐴) Fn 𝐴 ↔ (𝐹𝐴):𝐴⟶V)
81 dff13 7265 . . . . . 6 ((𝐹𝐴):𝐴1-1→V ↔ ((𝐹𝐴):𝐴⟶V ∧ ∀𝑥𝐴𝑦𝐴 (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦)))
82 df-f1 6554 . . . . . 6 ((𝐹𝐴):𝐴1-1→V ↔ ((𝐹𝐴):𝐴⟶V ∧ Fun (𝐹𝐴)))
8381, 82bitr3i 276 . . . . 5 (((𝐹𝐴):𝐴⟶V ∧ ∀𝑥𝐴𝑦𝐴 (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦)) ↔ ((𝐹𝐴):𝐴⟶V ∧ Fun (𝐹𝐴)))
8483simprbi 495 . . . 4 (((𝐹𝐴):𝐴⟶V ∧ ∀𝑥𝐴𝑦𝐴 (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦)) → Fun (𝐹𝐴))
8580, 84sylanb 579 . . 3 (((𝐹𝐴) Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦)) → Fun (𝐹𝐴))
8679, 85sylan 578 . 2 ((𝐴 ⊆ On ∧ ∀𝑥𝐴𝑦𝐴 (((𝐹𝐴)‘𝑥) = ((𝐹𝐴)‘𝑦) → 𝑥 = 𝑦)) → Fun (𝐹𝐴))
8776, 86syl 17 1 ((𝐴 ⊆ On ∧ ∀𝑥𝐴𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)) → Fun (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  wal 1531   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461  wss 3944  ccnv 5677  cres 5680  Ord word 6370  Oncon0 6371  Fun wfun 6543   Fn wfn 6544  wf 6545  1-1wf1 6546  cfv 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-res 5690  df-ord 6374  df-on 6375  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fv 6557
This theorem is referenced by:  tz7.48-2  8463  tz7.49  8466  zorn2lem4  10524
  Copyright terms: Public domain W3C validator