| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alimdv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.20 of [Margaris] p. 90, see alim 1810. See alimdh 1817 and alimd 2213 for versions without a distinct variable condition. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| alimdv | ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | alimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | alimdh 1817 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem is referenced by: 2alimdv 1918 ax12v2 2180 ax13lem1 2372 axc16i 2434 mo4 2559 ralimdv2 3138 mo2icl 3674 sstr2OLD 3943 reuss2 4277 ssuni 4883 disjss2 5062 disjss1 5065 disjiun 5080 disjss3 5091 alxfr 5346 axprlem1 5362 axprlem2 5363 axpr 5366 axprOLD 5370 frss 5583 ssrel 5726 ssrel2 5728 ssrelrel 5739 fvn0ssdmfun 7008 dff3 7034 dfwe2 7710 trom 7808 findcard3 9172 dffi2 9313 indcardi 9935 zorn2lem4 10393 uzindi 13889 caubnd 15266 ramtlecl 16912 psgnunilem4 19376 nrhmzr 20422 dfconn2 23304 wilthlem3 26978 disjss1f 32516 ssrelf 32560 axsepg2 35055 axsepg2ALT 35056 ss2mcls 35551 mclsax 35552 wzel 35808 onsuct0 36425 bj-zfauscl 36908 wl-ax13lem1 37478 axc11next 44389 traxext 44961 iscnrm3lem2 48929 setrec1lem2 49683 |
| Copyright terms: Public domain | W3C validator |