| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alimdv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.20 of [Margaris] p. 90, see alim 1811. See alimdh 1818 and alimd 2215 for versions without a distinct variable condition. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| alimdv | ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1911 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | alimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | alimdh 1818 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem is referenced by: 2alimdv 1919 ax12v2 2182 ax13lem1 2374 axc16i 2436 mo4 2561 ralimdv2 3141 mo2icl 3668 sstr2OLD 3937 reuss2 4273 ssuni 4881 disjss2 5059 disjss1 5062 disjiun 5077 disjss3 5088 alxfr 5343 axprlem1 5359 axprlem2 5360 axpr 5363 axprOLD 5367 frss 5578 ssrel 5722 ssrel2 5724 ssrelrel 5735 fvn0ssdmfun 7007 dff3 7033 dfwe2 7707 trom 7805 findcard3 9167 dffi2 9307 indcardi 9932 zorn2lem4 10390 uzindi 13889 caubnd 15266 ramtlecl 16912 psgnunilem4 19409 nrhmzr 20452 dfconn2 23334 wilthlem3 27007 disjss1f 32552 ssrelf 32598 axsepg2 35094 axsepg2ALT 35095 ss2mcls 35612 mclsax 35613 wzel 35866 onsuct0 36485 bj-zfauscl 36968 wl-ax13lem1 37538 axc11next 44498 traxext 45069 iscnrm3lem2 49034 setrec1lem2 49788 |
| Copyright terms: Public domain | W3C validator |