Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alimdv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.20 of [Margaris] p. 90, see alim 1814. See alimdh 1821 and alimd 2208 for versions without a distinct variable condition. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
alimdv | ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1914 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | alimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | alimdh 1821 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem is referenced by: 2alimdv 1922 ax12v2 2175 ax13lem1 2374 axc16i 2436 mo4 2566 ralimdv2 3101 mo2icl 3644 sstr2 3924 reuss2 4246 ssuni 4863 disjss2 5038 disjss1 5041 disjiun 5057 disjss3 5069 alxfr 5325 axprlem1 5341 axprlem2 5342 axpr 5346 frss 5547 ssrel 5683 ssrel2 5685 ssrelrel 5695 iotaval 6392 fvn0ssdmfun 6934 dff3 6958 dfwe2 7602 trom 7696 findcard3 8987 dffi2 9112 indcardi 9728 zorn2lem4 10186 uzindi 13630 caubnd 14998 ramtlecl 16629 psgnunilem4 19020 dfconn2 22478 wilthlem3 26124 disjss1f 30812 ssrelf 30856 ss2mcls 33430 mclsax 33431 wzel 33745 onsuct0 34557 bj-zfauscl 35039 wl-ax13lem1 35592 axc11next 41913 nrhmzr 45319 iscnrm3lem2 46116 setrec1lem2 46280 |
Copyright terms: Public domain | W3C validator |