| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alimdv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.20 of [Margaris] p. 90, see alim 1810. See alimdh 1817 and alimd 2213 for versions without a distinct variable condition. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| alimdv | ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | alimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | alimdh 1817 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem is referenced by: 2alimdv 1918 ax12v2 2180 ax13lem1 2372 axc16i 2434 mo4 2559 ralimdv2 3142 mo2icl 3682 sstr2OLD 3951 reuss2 4285 ssuni 4892 disjss2 5072 disjss1 5075 disjiun 5090 disjss3 5101 alxfr 5357 axprlem1 5373 axprlem2 5374 axpr 5377 axprOLD 5381 frss 5595 ssrel 5737 ssrel2 5739 ssrelrel 5750 iotavalOLD 6473 fvn0ssdmfun 7028 dff3 7054 dfwe2 7730 trom 7831 findcard3 9205 findcard3OLD 9206 dffi2 9350 indcardi 9970 zorn2lem4 10428 uzindi 13923 caubnd 15301 ramtlecl 16947 psgnunilem4 19411 nrhmzr 20457 dfconn2 23339 wilthlem3 27013 disjss1f 32551 ssrelf 32593 axsepg2 35065 axsepg2ALT 35066 ss2mcls 35548 mclsax 35549 wzel 35805 onsuct0 36422 bj-zfauscl 36905 wl-ax13lem1 37475 axc11next 44388 traxext 44960 iscnrm3lem2 48916 setrec1lem2 49670 |
| Copyright terms: Public domain | W3C validator |