![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alimdv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.20 of [Margaris] p. 90, see alim 1808. See alimdh 1815 and alimd 2213 for versions without a distinct variable condition. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
alimdv | ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1909 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | alimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | alimdh 1815 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem is referenced by: 2alimdv 1917 ax12v2 2180 ax13lem1 2382 axc16i 2444 mo4 2569 ralimdv2 3169 mo2icl 3736 sstr2OLD 4016 reuss2 4345 ssuni 4956 disjss2 5136 disjss1 5139 disjiun 5154 disjss3 5165 alxfr 5425 axprlem1 5441 axprlem2 5442 axpr 5446 frss 5664 ssrel 5806 ssrelOLD 5807 ssrel2 5809 ssrelrel 5820 iotavalOLD 6547 fvn0ssdmfun 7108 dff3 7134 dfwe2 7809 trom 7912 findcard3 9346 findcard3OLD 9347 dffi2 9492 indcardi 10110 zorn2lem4 10568 uzindi 14033 caubnd 15407 ramtlecl 17047 psgnunilem4 19539 nrhmzr 20563 dfconn2 23448 wilthlem3 27131 disjss1f 32594 ssrelf 32637 axsepg2 35058 axsepg2ALT 35059 ss2mcls 35536 mclsax 35537 wzel 35788 onsuct0 36407 bj-zfauscl 36890 wl-ax13lem1 37460 axc11next 44375 traxext 44910 iscnrm3lem2 48614 setrec1lem2 48780 |
Copyright terms: Public domain | W3C validator |