Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alimdv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.20 of [Margaris] p. 90, see alim 1812. See alimdh 1819 and alimd 2210 for versions without a distinct variable condition. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
alimdv | ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1911 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | alimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | alimdh 1819 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1797 ax-4 1811 ax-5 1911 |
This theorem is referenced by: 2alimdv 1919 ax12v2 2177 ax13lem1 2381 axc16i 2447 mo4 2584 ralimdv2 3107 mo2icl 3630 sstr2 3901 reuss2 4219 ssuni 4828 disjss2 5004 disjss1 5007 disjiun 5023 disjss3 5035 alxfr 5280 axprlem1 5296 axprlem2 5297 axpr 5301 frss 5495 ssrel 5631 ssrel2 5633 ssrelrel 5643 iotaval 6314 fvn0ssdmfun 6839 dff3 6863 dfwe2 7501 ordom 7594 findcard3 8807 dffi2 8933 indcardi 9514 zorn2lem4 9972 uzindi 13412 caubnd 14779 ramtlecl 16404 psgnunilem4 18705 dfconn2 22132 wilthlem3 25767 disjss1f 30446 ssrelf 30490 ss2mcls 33058 mclsax 33059 wzel 33385 onsuct0 34213 bj-zfauscl 34682 wl-ax13lem1 35225 axc11next 41518 nrhmzr 44913 iscnrm3lem2 45667 setrec1lem2 45703 |
Copyright terms: Public domain | W3C validator |