![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alimdv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.20 of [Margaris] p. 90, see alim 1812. See alimdh 1819 and alimd 2205 for versions without a distinct variable condition. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
alimdv | ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1913 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | alimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | alimdh 1819 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem is referenced by: 2alimdv 1921 ax12v2 2173 ax13lem1 2373 axc16i 2435 mo4 2560 ralimdv2 3163 mo2icl 3710 sstr2 3989 reuss2 4315 ssuni 4936 disjss2 5116 disjss1 5119 disjiun 5135 disjss3 5147 alxfr 5405 axprlem1 5421 axprlem2 5422 axpr 5426 frss 5643 ssrel 5782 ssrelOLD 5783 ssrel2 5785 ssrelrel 5796 iotavalOLD 6517 fvn0ssdmfun 7076 dff3 7101 dfwe2 7760 trom 7863 findcard3 9284 findcard3OLD 9285 dffi2 9417 indcardi 10035 zorn2lem4 10493 uzindi 13946 caubnd 15304 ramtlecl 16932 psgnunilem4 19364 dfconn2 22922 wilthlem3 26571 disjss1f 31798 ssrelf 31839 ss2mcls 34554 mclsax 34555 wzel 34791 onsuct0 35321 bj-zfauscl 35799 wl-ax13lem1 36370 axc11next 43155 nrhmzr 46637 iscnrm3lem2 47557 setrec1lem2 47723 |
Copyright terms: Public domain | W3C validator |