![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alimdv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.20 of [Margaris] p. 90, see alim 1813. See alimdh 1820 and alimd 2206 for versions without a distinct variable condition. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
alimdv | ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1914 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | alimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | alimdh 1820 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem is referenced by: 2alimdv 1922 ax12v2 2174 ax13lem1 2374 axc16i 2436 mo4 2561 ralimdv2 3164 mo2icl 3711 sstr2 3990 reuss2 4316 ssuni 4937 disjss2 5117 disjss1 5120 disjiun 5136 disjss3 5148 alxfr 5406 axprlem1 5422 axprlem2 5423 axpr 5427 frss 5644 ssrel 5783 ssrelOLD 5784 ssrel2 5786 ssrelrel 5797 iotavalOLD 6518 fvn0ssdmfun 7077 dff3 7102 dfwe2 7761 trom 7864 findcard3 9285 findcard3OLD 9286 dffi2 9418 indcardi 10036 zorn2lem4 10494 uzindi 13947 caubnd 15305 ramtlecl 16933 psgnunilem4 19365 dfconn2 22923 wilthlem3 26574 disjss1f 31834 ssrelf 31875 ss2mcls 34590 mclsax 34591 wzel 34827 onsuct0 35374 bj-zfauscl 35852 wl-ax13lem1 36423 axc11next 43213 nrhmzr 46695 iscnrm3lem2 47615 setrec1lem2 47781 |
Copyright terms: Public domain | W3C validator |