Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alimdv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.20 of [Margaris] p. 90, see alim 1813. See alimdh 1820 and alimd 2205 for versions without a distinct variable condition. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
alimdv | ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1913 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | alimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | alimdh 1820 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem is referenced by: 2alimdv 1921 ax12v2 2173 ax13lem1 2374 axc16i 2436 mo4 2566 ralimdv2 3107 mo2icl 3649 sstr2 3928 reuss2 4249 ssuni 4866 disjss2 5042 disjss1 5045 disjiun 5061 disjss3 5073 alxfr 5330 axprlem1 5346 axprlem2 5347 axpr 5351 frss 5556 ssrel 5693 ssrelOLD 5694 ssrel2 5696 ssrelrel 5706 iotaval 6407 fvn0ssdmfun 6952 dff3 6976 dfwe2 7624 trom 7721 findcard3 9057 dffi2 9182 indcardi 9797 zorn2lem4 10255 uzindi 13702 caubnd 15070 ramtlecl 16701 psgnunilem4 19105 dfconn2 22570 wilthlem3 26219 disjss1f 30911 ssrelf 30955 ss2mcls 33530 mclsax 33531 wzel 33818 onsuct0 34630 bj-zfauscl 35112 wl-ax13lem1 35665 axc11next 42024 nrhmzr 45431 iscnrm3lem2 46228 setrec1lem2 46394 |
Copyright terms: Public domain | W3C validator |