| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alimdv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.20 of [Margaris] p. 90, see alim 1810. See alimdh 1817 and alimd 2213 for versions without a distinct variable condition. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| alimdv | ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | alimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | alimdh 1817 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem is referenced by: 2alimdv 1918 ax12v2 2180 ax13lem1 2372 axc16i 2434 mo4 2559 ralimdv2 3142 mo2icl 3685 sstr2OLD 3954 reuss2 4289 ssuni 4896 disjss2 5077 disjss1 5080 disjiun 5095 disjss3 5106 alxfr 5362 axprlem1 5378 axprlem2 5379 axpr 5382 axprOLD 5386 frss 5602 ssrel 5745 ssrelOLD 5746 ssrel2 5748 ssrelrel 5759 iotavalOLD 6485 fvn0ssdmfun 7046 dff3 7072 dfwe2 7750 trom 7851 findcard3 9229 findcard3OLD 9230 dffi2 9374 indcardi 9994 zorn2lem4 10452 uzindi 13947 caubnd 15325 ramtlecl 16971 psgnunilem4 19427 nrhmzr 20446 dfconn2 23306 wilthlem3 26980 disjss1f 32501 ssrelf 32543 axsepg2 35072 axsepg2ALT 35073 ss2mcls 35555 mclsax 35556 wzel 35812 onsuct0 36429 bj-zfauscl 36912 wl-ax13lem1 37482 axc11next 44395 traxext 44967 iscnrm3lem2 48920 setrec1lem2 49674 |
| Copyright terms: Public domain | W3C validator |