Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsax Structured version   Visualization version   GIF version

Theorem mclsax 35537
Description: The closure is closed under axiom application. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d 𝐷 = (mDV‘𝑇)
mclsval.e 𝐸 = (mEx‘𝑇)
mclsval.c 𝐶 = (mCls‘𝑇)
mclsval.1 (𝜑𝑇 ∈ mFS)
mclsval.2 (𝜑𝐾𝐷)
mclsval.3 (𝜑𝐵𝐸)
mclsax.a 𝐴 = (mAx‘𝑇)
mclsax.l 𝐿 = (mSubst‘𝑇)
mclsax.v 𝑉 = (mVR‘𝑇)
mclsax.h 𝐻 = (mVH‘𝑇)
mclsax.w 𝑊 = (mVars‘𝑇)
mclsax.4 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴)
mclsax.5 (𝜑𝑆 ∈ ran 𝐿)
mclsax.6 ((𝜑𝑥𝑂) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
mclsax.7 ((𝜑𝑣𝑉) → (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))
mclsax.8 ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
Assertion
Ref Expression
mclsax (𝜑 → (𝑆𝑃) ∈ (𝐾𝐶𝐵))
Distinct variable groups:   𝑣,𝐸   𝑎,𝑏,𝑣,𝑥,𝐻   𝑦,𝑣,𝐵,𝑥   𝑣,𝐶,𝑥   𝑥,𝐿,𝑦   𝑥,𝑂,𝑦   𝑦,𝑎,𝑆,𝑏,𝑣,𝑥   𝑀,𝑎,𝑏,𝑥,𝑦   𝑥,𝑃,𝑦   𝑥,𝑇,𝑦   𝜑,𝑎,𝑏,𝑣,𝑥,𝑦   𝑣,𝑉,𝑥   𝑊,𝑎,𝑏,𝑥   𝐾,𝑎,𝑏,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣,𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑦,𝑎,𝑏)   𝐷(𝑥,𝑦,𝑣,𝑎,𝑏)   𝑃(𝑣,𝑎,𝑏)   𝑇(𝑣,𝑎,𝑏)   𝐸(𝑥,𝑦,𝑎,𝑏)   𝐻(𝑦)   𝐿(𝑣,𝑎,𝑏)   𝑀(𝑣)   𝑂(𝑣,𝑎,𝑏)   𝑉(𝑦,𝑎,𝑏)   𝑊(𝑦,𝑣)

Proof of Theorem mclsax
Dummy variables 𝑐 𝑚 𝑜 𝑝 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abid 2721 . . . . . . . 8 (𝑐 ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ↔ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
2 intss1 4987 . . . . . . . 8 (𝑐 ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} → {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝑐)
31, 2sylbir 235 . . . . . . 7 (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝑐)
4 mclsval.d . . . . . . . . 9 𝐷 = (mDV‘𝑇)
5 mclsval.e . . . . . . . . 9 𝐸 = (mEx‘𝑇)
6 mclsval.c . . . . . . . . 9 𝐶 = (mCls‘𝑇)
7 mclsval.1 . . . . . . . . 9 (𝜑𝑇 ∈ mFS)
8 mclsval.2 . . . . . . . . 9 (𝜑𝐾𝐷)
9 mclsval.3 . . . . . . . . 9 (𝜑𝐵𝐸)
10 mclsax.h . . . . . . . . 9 𝐻 = (mVH‘𝑇)
11 mclsax.a . . . . . . . . 9 𝐴 = (mAx‘𝑇)
12 mclsax.l . . . . . . . . 9 𝐿 = (mSubst‘𝑇)
13 mclsax.w . . . . . . . . 9 𝑊 = (mVars‘𝑇)
144, 5, 6, 7, 8, 9, 10, 11, 12, 13mclsval 35531 . . . . . . . 8 (𝜑 → (𝐾𝐶𝐵) = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
1514sseq1d 4040 . . . . . . 7 (𝜑 → ((𝐾𝐶𝐵) ⊆ 𝑐 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝑐))
163, 15imbitrrid 246 . . . . . 6 (𝜑 → (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → (𝐾𝐶𝐵) ⊆ 𝑐))
17 sstr2 4015 . . . . . . . . . . . . . . 15 ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) → ((𝐾𝐶𝐵) ⊆ 𝑐 → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐))
1817com12 32 . . . . . . . . . . . . . 14 ((𝐾𝐶𝐵) ⊆ 𝑐 → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐))
1918anim1d 610 . . . . . . . . . . . . 13 ((𝐾𝐶𝐵) ⊆ 𝑐 → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾))))
2019imim1d 82 . . . . . . . . . . . 12 ((𝐾𝐶𝐵) ⊆ 𝑐 → ((((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))
2120ralimdv 3175 . . . . . . . . . . 11 ((𝐾𝐶𝐵) ⊆ 𝑐 → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))
2221imim2d 57 . . . . . . . . . 10 ((𝐾𝐶𝐵) ⊆ 𝑐 → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
2322alimdv 1915 . . . . . . . . 9 ((𝐾𝐶𝐵) ⊆ 𝑐 → (∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
24232alimdv 1917 . . . . . . . 8 ((𝐾𝐶𝐵) ⊆ 𝑐 → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
2524com12 32 . . . . . . 7 (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → ((𝐾𝐶𝐵) ⊆ 𝑐 → ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
2625adantl 481 . . . . . 6 (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → ((𝐾𝐶𝐵) ⊆ 𝑐 → ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
2716, 26sylcom 30 . . . . 5 (𝜑 → (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
28 eqid 2740 . . . . . . . 8 (mPreSt‘𝑇) = (mPreSt‘𝑇)
29 eqid 2740 . . . . . . . 8 (mStat‘𝑇) = (mStat‘𝑇)
3028, 29mstapst 35515 . . . . . . 7 (mStat‘𝑇) ⊆ (mPreSt‘𝑇)
3111, 29maxsta 35522 . . . . . . . . 9 (𝑇 ∈ mFS → 𝐴 ⊆ (mStat‘𝑇))
327, 31syl 17 . . . . . . . 8 (𝜑𝐴 ⊆ (mStat‘𝑇))
33 mclsax.4 . . . . . . . 8 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴)
3432, 33sseldd 4009 . . . . . . 7 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ (mStat‘𝑇))
3530, 34sselid 4006 . . . . . 6 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ (mPreSt‘𝑇))
3628mpstrcl 35509 . . . . . 6 (⟨𝑀, 𝑂, 𝑃⟩ ∈ (mPreSt‘𝑇) → (𝑀 ∈ V ∧ 𝑂 ∈ V ∧ 𝑃 ∈ V))
37 simp1 1136 . . . . . . . . . 10 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → 𝑚 = 𝑀)
38 simp2 1137 . . . . . . . . . 10 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → 𝑜 = 𝑂)
39 simp3 1138 . . . . . . . . . 10 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → 𝑝 = 𝑃)
4037, 38, 39oteq123d 4912 . . . . . . . . 9 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → ⟨𝑚, 𝑜, 𝑝⟩ = ⟨𝑀, 𝑂, 𝑃⟩)
4140eleq1d 2829 . . . . . . . 8 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 ↔ ⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴))
4238uneq1d 4190 . . . . . . . . . . . . 13 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (𝑜 ∪ ran 𝐻) = (𝑂 ∪ ran 𝐻))
4342imaeq2d 6089 . . . . . . . . . . . 12 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (𝑠 “ (𝑜 ∪ ran 𝐻)) = (𝑠 “ (𝑂 ∪ ran 𝐻)))
4443sseq1d 4040 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ↔ (𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵)))
4537breqd 5177 . . . . . . . . . . . . 13 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (𝑥𝑚𝑦𝑥𝑀𝑦))
4645imbi1d 341 . . . . . . . . . . . 12 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → ((𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) ↔ (𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)))
47462albidv 1922 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) ↔ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)))
4844, 47anbi12d 631 . . . . . . . . . 10 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) ↔ ((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾))))
4939fveq2d 6924 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (𝑠𝑝) = (𝑠𝑃))
5049eleq1d 2829 . . . . . . . . . 10 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → ((𝑠𝑝) ∈ 𝑐 ↔ (𝑠𝑃) ∈ 𝑐))
5148, 50imbi12d 344 . . . . . . . . 9 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → ((((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) ↔ (((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐)))
5251ralbidv 3184 . . . . . . . 8 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) ↔ ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐)))
5341, 52imbi12d 344 . . . . . . 7 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) ↔ (⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐))))
5453spc3gv 3617 . . . . . 6 ((𝑀 ∈ V ∧ 𝑂 ∈ V ∧ 𝑃 ∈ V) → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → (⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐))))
5535, 36, 543syl 18 . . . . 5 (𝜑 → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → (⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐))))
56 elun 4176 . . . . . . . . . . 11 (𝑥 ∈ (𝑂 ∪ ran 𝐻) ↔ (𝑥𝑂𝑥 ∈ ran 𝐻))
57 mclsax.6 . . . . . . . . . . . 12 ((𝜑𝑥𝑂) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
58 mclsax.7 . . . . . . . . . . . . . . 15 ((𝜑𝑣𝑉) → (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))
5958ralrimiva 3152 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑣𝑉 (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))
60 mclsax.v . . . . . . . . . . . . . . . . 17 𝑉 = (mVR‘𝑇)
6160, 5, 10mvhf 35526 . . . . . . . . . . . . . . . 16 (𝑇 ∈ mFS → 𝐻:𝑉𝐸)
627, 61syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐻:𝑉𝐸)
63 ffn 6747 . . . . . . . . . . . . . . 15 (𝐻:𝑉𝐸𝐻 Fn 𝑉)
64 fveq2 6920 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝐻𝑣) → (𝑆𝑥) = (𝑆‘(𝐻𝑣)))
6564eleq1d 2829 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐻𝑣) → ((𝑆𝑥) ∈ (𝐾𝐶𝐵) ↔ (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵)))
6665ralrn 7122 . . . . . . . . . . . . . . 15 (𝐻 Fn 𝑉 → (∀𝑥 ∈ ran 𝐻(𝑆𝑥) ∈ (𝐾𝐶𝐵) ↔ ∀𝑣𝑉 (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵)))
6762, 63, 663syl 18 . . . . . . . . . . . . . 14 (𝜑 → (∀𝑥 ∈ ran 𝐻(𝑆𝑥) ∈ (𝐾𝐶𝐵) ↔ ∀𝑣𝑉 (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵)))
6859, 67mpbird 257 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ ran 𝐻(𝑆𝑥) ∈ (𝐾𝐶𝐵))
6968r19.21bi 3257 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ran 𝐻) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
7057, 69jaodan 958 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑂𝑥 ∈ ran 𝐻)) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
7156, 70sylan2b 593 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑂 ∪ ran 𝐻)) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
7271ralrimiva 3152 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (𝑂 ∪ ran 𝐻)(𝑆𝑥) ∈ (𝐾𝐶𝐵))
73 mclsax.5 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ran 𝐿)
7412, 5msubf 35500 . . . . . . . . . . . 12 (𝑆 ∈ ran 𝐿𝑆:𝐸𝐸)
7573, 74syl 17 . . . . . . . . . . 11 (𝜑𝑆:𝐸𝐸)
7675ffund 6751 . . . . . . . . . 10 (𝜑 → Fun 𝑆)
774, 5, 28elmpst 35504 . . . . . . . . . . . . . . 15 (⟨𝑀, 𝑂, 𝑃⟩ ∈ (mPreSt‘𝑇) ↔ ((𝑀𝐷𝑀 = 𝑀) ∧ (𝑂𝐸𝑂 ∈ Fin) ∧ 𝑃𝐸))
7835, 77sylib 218 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀𝐷𝑀 = 𝑀) ∧ (𝑂𝐸𝑂 ∈ Fin) ∧ 𝑃𝐸))
7978simp2d 1143 . . . . . . . . . . . . 13 (𝜑 → (𝑂𝐸𝑂 ∈ Fin))
8079simpld 494 . . . . . . . . . . . 12 (𝜑𝑂𝐸)
8175fdmd 6757 . . . . . . . . . . . 12 (𝜑 → dom 𝑆 = 𝐸)
8280, 81sseqtrrd 4050 . . . . . . . . . . 11 (𝜑𝑂 ⊆ dom 𝑆)
8362frnd 6755 . . . . . . . . . . . 12 (𝜑 → ran 𝐻𝐸)
8483, 81sseqtrrd 4050 . . . . . . . . . . 11 (𝜑 → ran 𝐻 ⊆ dom 𝑆)
8582, 84unssd 4215 . . . . . . . . . 10 (𝜑 → (𝑂 ∪ ran 𝐻) ⊆ dom 𝑆)
86 funimass4 6986 . . . . . . . . . 10 ((Fun 𝑆 ∧ (𝑂 ∪ ran 𝐻) ⊆ dom 𝑆) → ((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ↔ ∀𝑥 ∈ (𝑂 ∪ ran 𝐻)(𝑆𝑥) ∈ (𝐾𝐶𝐵)))
8776, 85, 86syl2anc 583 . . . . . . . . 9 (𝜑 → ((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ↔ ∀𝑥 ∈ (𝑂 ∪ ran 𝐻)(𝑆𝑥) ∈ (𝐾𝐶𝐵)))
8872, 87mpbird 257 . . . . . . . 8 (𝜑 → (𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵))
89 mclsax.8 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
90893exp2 1354 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑀𝑦 → (𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) → (𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))) → 𝑎𝐾𝑏))))
9190imp4b 421 . . . . . . . . . . . 12 ((𝜑𝑥𝑀𝑦) → ((𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦)))) → 𝑎𝐾𝑏))
9291ralrimivv 3206 . . . . . . . . . . 11 ((𝜑𝑥𝑀𝑦) → ∀𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥)))∀𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦)))𝑎𝐾𝑏)
93 dfss3 3997 . . . . . . . . . . . 12 (((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾 ↔ ∀𝑧 ∈ ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦))))𝑧𝐾)
94 eleq1 2832 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑎, 𝑏⟩ → (𝑧𝐾 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝐾))
95 df-br 5167 . . . . . . . . . . . . . 14 (𝑎𝐾𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝐾)
9694, 95bitr4di 289 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑎, 𝑏⟩ → (𝑧𝐾𝑎𝐾𝑏))
9796ralxp 5866 . . . . . . . . . . . 12 (∀𝑧 ∈ ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦))))𝑧𝐾 ↔ ∀𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥)))∀𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦)))𝑎𝐾𝑏)
9893, 97bitri 275 . . . . . . . . . . 11 (((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾 ↔ ∀𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥)))∀𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦)))𝑎𝐾𝑏)
9992, 98sylibr 234 . . . . . . . . . 10 ((𝜑𝑥𝑀𝑦) → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)
10099ex 412 . . . . . . . . 9 (𝜑 → (𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾))
101100alrimivv 1927 . . . . . . . 8 (𝜑 → ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾))
10288, 101jca 511 . . . . . . 7 (𝜑 → ((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)))
103 imaeq1 6084 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑠 “ (𝑂 ∪ ran 𝐻)) = (𝑆 “ (𝑂 ∪ ran 𝐻)))
104103sseq1d 4040 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ↔ (𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵)))
105 fveq1 6919 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑆 → (𝑠‘(𝐻𝑥)) = (𝑆‘(𝐻𝑥)))
106105fveq2d 6924 . . . . . . . . . . . . . . 15 (𝑠 = 𝑆 → (𝑊‘(𝑠‘(𝐻𝑥))) = (𝑊‘(𝑆‘(𝐻𝑥))))
107 fveq1 6919 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑆 → (𝑠‘(𝐻𝑦)) = (𝑆‘(𝐻𝑦)))
108107fveq2d 6924 . . . . . . . . . . . . . . 15 (𝑠 = 𝑆 → (𝑊‘(𝑠‘(𝐻𝑦))) = (𝑊‘(𝑆‘(𝐻𝑦))))
109106, 108xpeq12d 5731 . . . . . . . . . . . . . 14 (𝑠 = 𝑆 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) = ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))))
110109sseq1d 4040 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾 ↔ ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾))
111110imbi2d 340 . . . . . . . . . . . 12 (𝑠 = 𝑆 → ((𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) ↔ (𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)))
1121112albidv 1922 . . . . . . . . . . 11 (𝑠 = 𝑆 → (∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) ↔ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)))
113104, 112anbi12d 631 . . . . . . . . . 10 (𝑠 = 𝑆 → (((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) ↔ ((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾))))
114 fveq1 6919 . . . . . . . . . . 11 (𝑠 = 𝑆 → (𝑠𝑃) = (𝑆𝑃))
115114eleq1d 2829 . . . . . . . . . 10 (𝑠 = 𝑆 → ((𝑠𝑃) ∈ 𝑐 ↔ (𝑆𝑃) ∈ 𝑐))
116113, 115imbi12d 344 . . . . . . . . 9 (𝑠 = 𝑆 → ((((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐) ↔ (((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑆𝑃) ∈ 𝑐)))
117116rspcv 3631 . . . . . . . 8 (𝑆 ∈ ran 𝐿 → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐) → (((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑆𝑃) ∈ 𝑐)))
11873, 117syl 17 . . . . . . 7 (𝜑 → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐) → (((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑆𝑃) ∈ 𝑐)))
119102, 118mpid 44 . . . . . 6 (𝜑 → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐) → (𝑆𝑃) ∈ 𝑐))
12033, 119embantd 59 . . . . 5 (𝜑 → ((⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐)) → (𝑆𝑃) ∈ 𝑐))
12127, 55, 1203syld 60 . . . 4 (𝜑 → (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → (𝑆𝑃) ∈ 𝑐))
122121alrimiv 1926 . . 3 (𝜑 → ∀𝑐(((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → (𝑆𝑃) ∈ 𝑐))
123 fvex 6933 . . . 4 (𝑆𝑃) ∈ V
124123elintab 4982 . . 3 ((𝑆𝑃) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ↔ ∀𝑐(((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → (𝑆𝑃) ∈ 𝑐))
125122, 124sylibr 234 . 2 (𝜑 → (𝑆𝑃) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
126125, 14eleqtrrd 2847 1 (𝜑 → (𝑆𝑃) ∈ (𝐾𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087  wal 1535   = wceq 1537  wcel 2108  {cab 2717  wral 3067  Vcvv 3488  cun 3974  wss 3976  cop 4654  cotp 4656   cint 4970   class class class wbr 5166   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  mVRcmvar 35429  mAxcmax 35433  mExcmex 35435  mDVcmdv 35436  mVarscmvrs 35437  mSubstcmsub 35439  mVHcmvh 35440  mPreStcmpst 35441  mStatcmsta 35443  mFScmfs 35444  mClscmcls 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-frmd 18884  df-mrex 35454  df-mex 35455  df-mrsub 35458  df-msub 35459  df-mvh 35460  df-mpst 35461  df-msr 35462  df-msta 35463  df-mfs 35464  df-mcls 35465
This theorem is referenced by:  mclsppslem  35551
  Copyright terms: Public domain W3C validator