Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsax Structured version   Visualization version   GIF version

Theorem mclsax 35634
Description: The closure is closed under axiom application. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d 𝐷 = (mDV‘𝑇)
mclsval.e 𝐸 = (mEx‘𝑇)
mclsval.c 𝐶 = (mCls‘𝑇)
mclsval.1 (𝜑𝑇 ∈ mFS)
mclsval.2 (𝜑𝐾𝐷)
mclsval.3 (𝜑𝐵𝐸)
mclsax.a 𝐴 = (mAx‘𝑇)
mclsax.l 𝐿 = (mSubst‘𝑇)
mclsax.v 𝑉 = (mVR‘𝑇)
mclsax.h 𝐻 = (mVH‘𝑇)
mclsax.w 𝑊 = (mVars‘𝑇)
mclsax.4 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴)
mclsax.5 (𝜑𝑆 ∈ ran 𝐿)
mclsax.6 ((𝜑𝑥𝑂) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
mclsax.7 ((𝜑𝑣𝑉) → (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))
mclsax.8 ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
Assertion
Ref Expression
mclsax (𝜑 → (𝑆𝑃) ∈ (𝐾𝐶𝐵))
Distinct variable groups:   𝑣,𝐸   𝑎,𝑏,𝑣,𝑥,𝐻   𝑦,𝑣,𝐵,𝑥   𝑣,𝐶,𝑥   𝑥,𝐿,𝑦   𝑥,𝑂,𝑦   𝑦,𝑎,𝑆,𝑏,𝑣,𝑥   𝑀,𝑎,𝑏,𝑥,𝑦   𝑥,𝑃,𝑦   𝑥,𝑇,𝑦   𝜑,𝑎,𝑏,𝑣,𝑥,𝑦   𝑣,𝑉,𝑥   𝑊,𝑎,𝑏,𝑥   𝐾,𝑎,𝑏,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣,𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑦,𝑎,𝑏)   𝐷(𝑥,𝑦,𝑣,𝑎,𝑏)   𝑃(𝑣,𝑎,𝑏)   𝑇(𝑣,𝑎,𝑏)   𝐸(𝑥,𝑦,𝑎,𝑏)   𝐻(𝑦)   𝐿(𝑣,𝑎,𝑏)   𝑀(𝑣)   𝑂(𝑣,𝑎,𝑏)   𝑉(𝑦,𝑎,𝑏)   𝑊(𝑦,𝑣)

Proof of Theorem mclsax
Dummy variables 𝑐 𝑚 𝑜 𝑝 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abid 2715 . . . . . . . 8 (𝑐 ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ↔ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
2 intss1 4913 . . . . . . . 8 (𝑐 ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} → {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝑐)
31, 2sylbir 235 . . . . . . 7 (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝑐)
4 mclsval.d . . . . . . . . 9 𝐷 = (mDV‘𝑇)
5 mclsval.e . . . . . . . . 9 𝐸 = (mEx‘𝑇)
6 mclsval.c . . . . . . . . 9 𝐶 = (mCls‘𝑇)
7 mclsval.1 . . . . . . . . 9 (𝜑𝑇 ∈ mFS)
8 mclsval.2 . . . . . . . . 9 (𝜑𝐾𝐷)
9 mclsval.3 . . . . . . . . 9 (𝜑𝐵𝐸)
10 mclsax.h . . . . . . . . 9 𝐻 = (mVH‘𝑇)
11 mclsax.a . . . . . . . . 9 𝐴 = (mAx‘𝑇)
12 mclsax.l . . . . . . . . 9 𝐿 = (mSubst‘𝑇)
13 mclsax.w . . . . . . . . 9 𝑊 = (mVars‘𝑇)
144, 5, 6, 7, 8, 9, 10, 11, 12, 13mclsval 35628 . . . . . . . 8 (𝜑 → (𝐾𝐶𝐵) = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
1514sseq1d 3962 . . . . . . 7 (𝜑 → ((𝐾𝐶𝐵) ⊆ 𝑐 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝑐))
163, 15imbitrrid 246 . . . . . 6 (𝜑 → (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → (𝐾𝐶𝐵) ⊆ 𝑐))
17 sstr2 3937 . . . . . . . . . . . . . . 15 ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) → ((𝐾𝐶𝐵) ⊆ 𝑐 → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐))
1817com12 32 . . . . . . . . . . . . . 14 ((𝐾𝐶𝐵) ⊆ 𝑐 → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐))
1918anim1d 611 . . . . . . . . . . . . 13 ((𝐾𝐶𝐵) ⊆ 𝑐 → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾))))
2019imim1d 82 . . . . . . . . . . . 12 ((𝐾𝐶𝐵) ⊆ 𝑐 → ((((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))
2120ralimdv 3147 . . . . . . . . . . 11 ((𝐾𝐶𝐵) ⊆ 𝑐 → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))
2221imim2d 57 . . . . . . . . . 10 ((𝐾𝐶𝐵) ⊆ 𝑐 → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
2322alimdv 1917 . . . . . . . . 9 ((𝐾𝐶𝐵) ⊆ 𝑐 → (∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
24232alimdv 1919 . . . . . . . 8 ((𝐾𝐶𝐵) ⊆ 𝑐 → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
2524com12 32 . . . . . . 7 (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → ((𝐾𝐶𝐵) ⊆ 𝑐 → ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
2625adantl 481 . . . . . 6 (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → ((𝐾𝐶𝐵) ⊆ 𝑐 → ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
2716, 26sylcom 30 . . . . 5 (𝜑 → (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
28 eqid 2733 . . . . . . . 8 (mPreSt‘𝑇) = (mPreSt‘𝑇)
29 eqid 2733 . . . . . . . 8 (mStat‘𝑇) = (mStat‘𝑇)
3028, 29mstapst 35612 . . . . . . 7 (mStat‘𝑇) ⊆ (mPreSt‘𝑇)
3111, 29maxsta 35619 . . . . . . . . 9 (𝑇 ∈ mFS → 𝐴 ⊆ (mStat‘𝑇))
327, 31syl 17 . . . . . . . 8 (𝜑𝐴 ⊆ (mStat‘𝑇))
33 mclsax.4 . . . . . . . 8 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴)
3432, 33sseldd 3931 . . . . . . 7 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ (mStat‘𝑇))
3530, 34sselid 3928 . . . . . 6 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ (mPreSt‘𝑇))
3628mpstrcl 35606 . . . . . 6 (⟨𝑀, 𝑂, 𝑃⟩ ∈ (mPreSt‘𝑇) → (𝑀 ∈ V ∧ 𝑂 ∈ V ∧ 𝑃 ∈ V))
37 simp1 1136 . . . . . . . . . 10 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → 𝑚 = 𝑀)
38 simp2 1137 . . . . . . . . . 10 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → 𝑜 = 𝑂)
39 simp3 1138 . . . . . . . . . 10 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → 𝑝 = 𝑃)
4037, 38, 39oteq123d 4839 . . . . . . . . 9 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → ⟨𝑚, 𝑜, 𝑝⟩ = ⟨𝑀, 𝑂, 𝑃⟩)
4140eleq1d 2818 . . . . . . . 8 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 ↔ ⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴))
4238uneq1d 4116 . . . . . . . . . . . . 13 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (𝑜 ∪ ran 𝐻) = (𝑂 ∪ ran 𝐻))
4342imaeq2d 6013 . . . . . . . . . . . 12 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (𝑠 “ (𝑜 ∪ ran 𝐻)) = (𝑠 “ (𝑂 ∪ ran 𝐻)))
4443sseq1d 3962 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ↔ (𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵)))
4537breqd 5104 . . . . . . . . . . . . 13 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (𝑥𝑚𝑦𝑥𝑀𝑦))
4645imbi1d 341 . . . . . . . . . . . 12 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → ((𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) ↔ (𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)))
47462albidv 1924 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) ↔ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)))
4844, 47anbi12d 632 . . . . . . . . . 10 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) ↔ ((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾))))
4939fveq2d 6832 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (𝑠𝑝) = (𝑠𝑃))
5049eleq1d 2818 . . . . . . . . . 10 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → ((𝑠𝑝) ∈ 𝑐 ↔ (𝑠𝑃) ∈ 𝑐))
5148, 50imbi12d 344 . . . . . . . . 9 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → ((((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) ↔ (((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐)))
5251ralbidv 3156 . . . . . . . 8 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) ↔ ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐)))
5341, 52imbi12d 344 . . . . . . 7 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) ↔ (⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐))))
5453spc3gv 3555 . . . . . 6 ((𝑀 ∈ V ∧ 𝑂 ∈ V ∧ 𝑃 ∈ V) → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → (⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐))))
5535, 36, 543syl 18 . . . . 5 (𝜑 → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → (⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐))))
56 elun 4102 . . . . . . . . . . 11 (𝑥 ∈ (𝑂 ∪ ran 𝐻) ↔ (𝑥𝑂𝑥 ∈ ran 𝐻))
57 mclsax.6 . . . . . . . . . . . 12 ((𝜑𝑥𝑂) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
58 mclsax.7 . . . . . . . . . . . . . . 15 ((𝜑𝑣𝑉) → (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))
5958ralrimiva 3125 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑣𝑉 (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))
60 mclsax.v . . . . . . . . . . . . . . . . 17 𝑉 = (mVR‘𝑇)
6160, 5, 10mvhf 35623 . . . . . . . . . . . . . . . 16 (𝑇 ∈ mFS → 𝐻:𝑉𝐸)
627, 61syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐻:𝑉𝐸)
63 ffn 6656 . . . . . . . . . . . . . . 15 (𝐻:𝑉𝐸𝐻 Fn 𝑉)
64 fveq2 6828 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝐻𝑣) → (𝑆𝑥) = (𝑆‘(𝐻𝑣)))
6564eleq1d 2818 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐻𝑣) → ((𝑆𝑥) ∈ (𝐾𝐶𝐵) ↔ (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵)))
6665ralrn 7027 . . . . . . . . . . . . . . 15 (𝐻 Fn 𝑉 → (∀𝑥 ∈ ran 𝐻(𝑆𝑥) ∈ (𝐾𝐶𝐵) ↔ ∀𝑣𝑉 (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵)))
6762, 63, 663syl 18 . . . . . . . . . . . . . 14 (𝜑 → (∀𝑥 ∈ ran 𝐻(𝑆𝑥) ∈ (𝐾𝐶𝐵) ↔ ∀𝑣𝑉 (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵)))
6859, 67mpbird 257 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ ran 𝐻(𝑆𝑥) ∈ (𝐾𝐶𝐵))
6968r19.21bi 3225 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ran 𝐻) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
7057, 69jaodan 959 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑂𝑥 ∈ ran 𝐻)) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
7156, 70sylan2b 594 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑂 ∪ ran 𝐻)) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
7271ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (𝑂 ∪ ran 𝐻)(𝑆𝑥) ∈ (𝐾𝐶𝐵))
73 mclsax.5 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ran 𝐿)
7412, 5msubf 35597 . . . . . . . . . . . 12 (𝑆 ∈ ran 𝐿𝑆:𝐸𝐸)
7573, 74syl 17 . . . . . . . . . . 11 (𝜑𝑆:𝐸𝐸)
7675ffund 6660 . . . . . . . . . 10 (𝜑 → Fun 𝑆)
774, 5, 28elmpst 35601 . . . . . . . . . . . . . . 15 (⟨𝑀, 𝑂, 𝑃⟩ ∈ (mPreSt‘𝑇) ↔ ((𝑀𝐷𝑀 = 𝑀) ∧ (𝑂𝐸𝑂 ∈ Fin) ∧ 𝑃𝐸))
7835, 77sylib 218 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀𝐷𝑀 = 𝑀) ∧ (𝑂𝐸𝑂 ∈ Fin) ∧ 𝑃𝐸))
7978simp2d 1143 . . . . . . . . . . . . 13 (𝜑 → (𝑂𝐸𝑂 ∈ Fin))
8079simpld 494 . . . . . . . . . . . 12 (𝜑𝑂𝐸)
8175fdmd 6666 . . . . . . . . . . . 12 (𝜑 → dom 𝑆 = 𝐸)
8280, 81sseqtrrd 3968 . . . . . . . . . . 11 (𝜑𝑂 ⊆ dom 𝑆)
8362frnd 6664 . . . . . . . . . . . 12 (𝜑 → ran 𝐻𝐸)
8483, 81sseqtrrd 3968 . . . . . . . . . . 11 (𝜑 → ran 𝐻 ⊆ dom 𝑆)
8582, 84unssd 4141 . . . . . . . . . 10 (𝜑 → (𝑂 ∪ ran 𝐻) ⊆ dom 𝑆)
86 funimass4 6892 . . . . . . . . . 10 ((Fun 𝑆 ∧ (𝑂 ∪ ran 𝐻) ⊆ dom 𝑆) → ((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ↔ ∀𝑥 ∈ (𝑂 ∪ ran 𝐻)(𝑆𝑥) ∈ (𝐾𝐶𝐵)))
8776, 85, 86syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ↔ ∀𝑥 ∈ (𝑂 ∪ ran 𝐻)(𝑆𝑥) ∈ (𝐾𝐶𝐵)))
8872, 87mpbird 257 . . . . . . . 8 (𝜑 → (𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵))
89 mclsax.8 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
90893exp2 1355 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑀𝑦 → (𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) → (𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))) → 𝑎𝐾𝑏))))
9190imp4b 421 . . . . . . . . . . . 12 ((𝜑𝑥𝑀𝑦) → ((𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦)))) → 𝑎𝐾𝑏))
9291ralrimivv 3174 . . . . . . . . . . 11 ((𝜑𝑥𝑀𝑦) → ∀𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥)))∀𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦)))𝑎𝐾𝑏)
93 dfss3 3919 . . . . . . . . . . . 12 (((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾 ↔ ∀𝑧 ∈ ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦))))𝑧𝐾)
94 eleq1 2821 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑎, 𝑏⟩ → (𝑧𝐾 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝐾))
95 df-br 5094 . . . . . . . . . . . . . 14 (𝑎𝐾𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝐾)
9694, 95bitr4di 289 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑎, 𝑏⟩ → (𝑧𝐾𝑎𝐾𝑏))
9796ralxp 5785 . . . . . . . . . . . 12 (∀𝑧 ∈ ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦))))𝑧𝐾 ↔ ∀𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥)))∀𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦)))𝑎𝐾𝑏)
9893, 97bitri 275 . . . . . . . . . . 11 (((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾 ↔ ∀𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥)))∀𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦)))𝑎𝐾𝑏)
9992, 98sylibr 234 . . . . . . . . . 10 ((𝜑𝑥𝑀𝑦) → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)
10099ex 412 . . . . . . . . 9 (𝜑 → (𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾))
101100alrimivv 1929 . . . . . . . 8 (𝜑 → ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾))
10288, 101jca 511 . . . . . . 7 (𝜑 → ((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)))
103 imaeq1 6008 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑠 “ (𝑂 ∪ ran 𝐻)) = (𝑆 “ (𝑂 ∪ ran 𝐻)))
104103sseq1d 3962 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ↔ (𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵)))
105 fveq1 6827 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑆 → (𝑠‘(𝐻𝑥)) = (𝑆‘(𝐻𝑥)))
106105fveq2d 6832 . . . . . . . . . . . . . . 15 (𝑠 = 𝑆 → (𝑊‘(𝑠‘(𝐻𝑥))) = (𝑊‘(𝑆‘(𝐻𝑥))))
107 fveq1 6827 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑆 → (𝑠‘(𝐻𝑦)) = (𝑆‘(𝐻𝑦)))
108107fveq2d 6832 . . . . . . . . . . . . . . 15 (𝑠 = 𝑆 → (𝑊‘(𝑠‘(𝐻𝑦))) = (𝑊‘(𝑆‘(𝐻𝑦))))
109106, 108xpeq12d 5650 . . . . . . . . . . . . . 14 (𝑠 = 𝑆 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) = ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))))
110109sseq1d 3962 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾 ↔ ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾))
111110imbi2d 340 . . . . . . . . . . . 12 (𝑠 = 𝑆 → ((𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) ↔ (𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)))
1121112albidv 1924 . . . . . . . . . . 11 (𝑠 = 𝑆 → (∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) ↔ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)))
113104, 112anbi12d 632 . . . . . . . . . 10 (𝑠 = 𝑆 → (((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) ↔ ((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾))))
114 fveq1 6827 . . . . . . . . . . 11 (𝑠 = 𝑆 → (𝑠𝑃) = (𝑆𝑃))
115114eleq1d 2818 . . . . . . . . . 10 (𝑠 = 𝑆 → ((𝑠𝑃) ∈ 𝑐 ↔ (𝑆𝑃) ∈ 𝑐))
116113, 115imbi12d 344 . . . . . . . . 9 (𝑠 = 𝑆 → ((((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐) ↔ (((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑆𝑃) ∈ 𝑐)))
117116rspcv 3569 . . . . . . . 8 (𝑆 ∈ ran 𝐿 → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐) → (((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑆𝑃) ∈ 𝑐)))
11873, 117syl 17 . . . . . . 7 (𝜑 → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐) → (((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑆𝑃) ∈ 𝑐)))
119102, 118mpid 44 . . . . . 6 (𝜑 → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐) → (𝑆𝑃) ∈ 𝑐))
12033, 119embantd 59 . . . . 5 (𝜑 → ((⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐)) → (𝑆𝑃) ∈ 𝑐))
12127, 55, 1203syld 60 . . . 4 (𝜑 → (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → (𝑆𝑃) ∈ 𝑐))
122121alrimiv 1928 . . 3 (𝜑 → ∀𝑐(((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → (𝑆𝑃) ∈ 𝑐))
123 fvex 6841 . . . 4 (𝑆𝑃) ∈ V
124123elintab 4909 . . 3 ((𝑆𝑃) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ↔ ∀𝑐(((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → (𝑆𝑃) ∈ 𝑐))
125122, 124sylibr 234 . 2 (𝜑 → (𝑆𝑃) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
126125, 14eleqtrrd 2836 1 (𝜑 → (𝑆𝑃) ∈ (𝐾𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1539   = wceq 1541  wcel 2113  {cab 2711  wral 3048  Vcvv 3437  cun 3896  wss 3898  cop 4581  cotp 4583   cint 4897   class class class wbr 5093   × cxp 5617  ccnv 5618  dom cdm 5619  ran crn 5620  cima 5622  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  Fincfn 8875  mVRcmvar 35526  mAxcmax 35530  mExcmex 35532  mDVcmdv 35533  mVarscmvrs 35534  mSubstcmsub 35536  mVHcmvh 35537  mPreStcmpst 35538  mStatcmsta 35540  mFScmfs 35541  mClscmcls 35542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-word 14423  df-concat 14480  df-s1 14506  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-0g 17347  df-gsum 17348  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-frmd 18759  df-mrex 35551  df-mex 35552  df-mrsub 35555  df-msub 35556  df-mvh 35557  df-mpst 35558  df-msr 35559  df-msta 35560  df-mfs 35561  df-mcls 35562
This theorem is referenced by:  mclsppslem  35648
  Copyright terms: Public domain W3C validator