Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsax Structured version   Visualization version   GIF version

Theorem mclsax 33244
Description: The closure is closed under axiom application. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d 𝐷 = (mDV‘𝑇)
mclsval.e 𝐸 = (mEx‘𝑇)
mclsval.c 𝐶 = (mCls‘𝑇)
mclsval.1 (𝜑𝑇 ∈ mFS)
mclsval.2 (𝜑𝐾𝐷)
mclsval.3 (𝜑𝐵𝐸)
mclsax.a 𝐴 = (mAx‘𝑇)
mclsax.l 𝐿 = (mSubst‘𝑇)
mclsax.v 𝑉 = (mVR‘𝑇)
mclsax.h 𝐻 = (mVH‘𝑇)
mclsax.w 𝑊 = (mVars‘𝑇)
mclsax.4 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴)
mclsax.5 (𝜑𝑆 ∈ ran 𝐿)
mclsax.6 ((𝜑𝑥𝑂) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
mclsax.7 ((𝜑𝑣𝑉) → (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))
mclsax.8 ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
Assertion
Ref Expression
mclsax (𝜑 → (𝑆𝑃) ∈ (𝐾𝐶𝐵))
Distinct variable groups:   𝑣,𝐸   𝑎,𝑏,𝑣,𝑥,𝐻   𝑦,𝑣,𝐵,𝑥   𝑣,𝐶,𝑥   𝑥,𝐿,𝑦   𝑥,𝑂,𝑦   𝑦,𝑎,𝑆,𝑏,𝑣,𝑥   𝑀,𝑎,𝑏,𝑥,𝑦   𝑥,𝑃,𝑦   𝑥,𝑇,𝑦   𝜑,𝑎,𝑏,𝑣,𝑥,𝑦   𝑣,𝑉,𝑥   𝑊,𝑎,𝑏,𝑥   𝐾,𝑎,𝑏,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣,𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑦,𝑎,𝑏)   𝐷(𝑥,𝑦,𝑣,𝑎,𝑏)   𝑃(𝑣,𝑎,𝑏)   𝑇(𝑣,𝑎,𝑏)   𝐸(𝑥,𝑦,𝑎,𝑏)   𝐻(𝑦)   𝐿(𝑣,𝑎,𝑏)   𝑀(𝑣)   𝑂(𝑣,𝑎,𝑏)   𝑉(𝑦,𝑎,𝑏)   𝑊(𝑦,𝑣)

Proof of Theorem mclsax
Dummy variables 𝑐 𝑚 𝑜 𝑝 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abid 2718 . . . . . . . 8 (𝑐 ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ↔ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
2 intss1 4874 . . . . . . . 8 (𝑐 ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} → {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝑐)
31, 2sylbir 238 . . . . . . 7 (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝑐)
4 mclsval.d . . . . . . . . 9 𝐷 = (mDV‘𝑇)
5 mclsval.e . . . . . . . . 9 𝐸 = (mEx‘𝑇)
6 mclsval.c . . . . . . . . 9 𝐶 = (mCls‘𝑇)
7 mclsval.1 . . . . . . . . 9 (𝜑𝑇 ∈ mFS)
8 mclsval.2 . . . . . . . . 9 (𝜑𝐾𝐷)
9 mclsval.3 . . . . . . . . 9 (𝜑𝐵𝐸)
10 mclsax.h . . . . . . . . 9 𝐻 = (mVH‘𝑇)
11 mclsax.a . . . . . . . . 9 𝐴 = (mAx‘𝑇)
12 mclsax.l . . . . . . . . 9 𝐿 = (mSubst‘𝑇)
13 mclsax.w . . . . . . . . 9 𝑊 = (mVars‘𝑇)
144, 5, 6, 7, 8, 9, 10, 11, 12, 13mclsval 33238 . . . . . . . 8 (𝜑 → (𝐾𝐶𝐵) = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
1514sseq1d 3932 . . . . . . 7 (𝜑 → ((𝐾𝐶𝐵) ⊆ 𝑐 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝑐))
163, 15syl5ibr 249 . . . . . 6 (𝜑 → (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → (𝐾𝐶𝐵) ⊆ 𝑐))
17 sstr2 3908 . . . . . . . . . . . . . . 15 ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) → ((𝐾𝐶𝐵) ⊆ 𝑐 → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐))
1817com12 32 . . . . . . . . . . . . . 14 ((𝐾𝐶𝐵) ⊆ 𝑐 → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐))
1918anim1d 614 . . . . . . . . . . . . 13 ((𝐾𝐶𝐵) ⊆ 𝑐 → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾))))
2019imim1d 82 . . . . . . . . . . . 12 ((𝐾𝐶𝐵) ⊆ 𝑐 → ((((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))
2120ralimdv 3101 . . . . . . . . . . 11 ((𝐾𝐶𝐵) ⊆ 𝑐 → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))
2221imim2d 57 . . . . . . . . . 10 ((𝐾𝐶𝐵) ⊆ 𝑐 → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
2322alimdv 1924 . . . . . . . . 9 ((𝐾𝐶𝐵) ⊆ 𝑐 → (∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
24232alimdv 1926 . . . . . . . 8 ((𝐾𝐶𝐵) ⊆ 𝑐 → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
2524com12 32 . . . . . . 7 (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → ((𝐾𝐶𝐵) ⊆ 𝑐 → ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
2625adantl 485 . . . . . 6 (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → ((𝐾𝐶𝐵) ⊆ 𝑐 → ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
2716, 26sylcom 30 . . . . 5 (𝜑 → (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))))
28 eqid 2737 . . . . . . . 8 (mPreSt‘𝑇) = (mPreSt‘𝑇)
29 eqid 2737 . . . . . . . 8 (mStat‘𝑇) = (mStat‘𝑇)
3028, 29mstapst 33222 . . . . . . 7 (mStat‘𝑇) ⊆ (mPreSt‘𝑇)
3111, 29maxsta 33229 . . . . . . . . 9 (𝑇 ∈ mFS → 𝐴 ⊆ (mStat‘𝑇))
327, 31syl 17 . . . . . . . 8 (𝜑𝐴 ⊆ (mStat‘𝑇))
33 mclsax.4 . . . . . . . 8 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴)
3432, 33sseldd 3902 . . . . . . 7 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ (mStat‘𝑇))
3530, 34sseldi 3899 . . . . . 6 (𝜑 → ⟨𝑀, 𝑂, 𝑃⟩ ∈ (mPreSt‘𝑇))
3628mpstrcl 33216 . . . . . 6 (⟨𝑀, 𝑂, 𝑃⟩ ∈ (mPreSt‘𝑇) → (𝑀 ∈ V ∧ 𝑂 ∈ V ∧ 𝑃 ∈ V))
37 simp1 1138 . . . . . . . . . 10 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → 𝑚 = 𝑀)
38 simp2 1139 . . . . . . . . . 10 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → 𝑜 = 𝑂)
39 simp3 1140 . . . . . . . . . 10 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → 𝑝 = 𝑃)
4037, 38, 39oteq123d 4799 . . . . . . . . 9 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → ⟨𝑚, 𝑜, 𝑝⟩ = ⟨𝑀, 𝑂, 𝑃⟩)
4140eleq1d 2822 . . . . . . . 8 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 ↔ ⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴))
4238uneq1d 4076 . . . . . . . . . . . . 13 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (𝑜 ∪ ran 𝐻) = (𝑂 ∪ ran 𝐻))
4342imaeq2d 5929 . . . . . . . . . . . 12 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (𝑠 “ (𝑜 ∪ ran 𝐻)) = (𝑠 “ (𝑂 ∪ ran 𝐻)))
4443sseq1d 3932 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ↔ (𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵)))
4537breqd 5064 . . . . . . . . . . . . 13 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (𝑥𝑚𝑦𝑥𝑀𝑦))
4645imbi1d 345 . . . . . . . . . . . 12 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → ((𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) ↔ (𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)))
47462albidv 1931 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) ↔ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)))
4844, 47anbi12d 634 . . . . . . . . . 10 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) ↔ ((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾))))
4939fveq2d 6721 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (𝑠𝑝) = (𝑠𝑃))
5049eleq1d 2822 . . . . . . . . . 10 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → ((𝑠𝑝) ∈ 𝑐 ↔ (𝑠𝑃) ∈ 𝑐))
5148, 50imbi12d 348 . . . . . . . . 9 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → ((((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) ↔ (((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐)))
5251ralbidv 3118 . . . . . . . 8 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) ↔ ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐)))
5341, 52imbi12d 348 . . . . . . 7 ((𝑚 = 𝑀𝑜 = 𝑂𝑝 = 𝑃) → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) ↔ (⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐))))
5453spc3gv 3519 . . . . . 6 ((𝑀 ∈ V ∧ 𝑂 ∈ V ∧ 𝑃 ∈ V) → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → (⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐))))
5535, 36, 543syl 18 . . . . 5 (𝜑 → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) → (⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐))))
56 elun 4063 . . . . . . . . . . 11 (𝑥 ∈ (𝑂 ∪ ran 𝐻) ↔ (𝑥𝑂𝑥 ∈ ran 𝐻))
57 mclsax.6 . . . . . . . . . . . 12 ((𝜑𝑥𝑂) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
58 mclsax.7 . . . . . . . . . . . . . . 15 ((𝜑𝑣𝑉) → (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))
5958ralrimiva 3105 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑣𝑉 (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵))
60 mclsax.v . . . . . . . . . . . . . . . . 17 𝑉 = (mVR‘𝑇)
6160, 5, 10mvhf 33233 . . . . . . . . . . . . . . . 16 (𝑇 ∈ mFS → 𝐻:𝑉𝐸)
627, 61syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐻:𝑉𝐸)
63 ffn 6545 . . . . . . . . . . . . . . 15 (𝐻:𝑉𝐸𝐻 Fn 𝑉)
64 fveq2 6717 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝐻𝑣) → (𝑆𝑥) = (𝑆‘(𝐻𝑣)))
6564eleq1d 2822 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐻𝑣) → ((𝑆𝑥) ∈ (𝐾𝐶𝐵) ↔ (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵)))
6665ralrn 6907 . . . . . . . . . . . . . . 15 (𝐻 Fn 𝑉 → (∀𝑥 ∈ ran 𝐻(𝑆𝑥) ∈ (𝐾𝐶𝐵) ↔ ∀𝑣𝑉 (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵)))
6762, 63, 663syl 18 . . . . . . . . . . . . . 14 (𝜑 → (∀𝑥 ∈ ran 𝐻(𝑆𝑥) ∈ (𝐾𝐶𝐵) ↔ ∀𝑣𝑉 (𝑆‘(𝐻𝑣)) ∈ (𝐾𝐶𝐵)))
6859, 67mpbird 260 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ ran 𝐻(𝑆𝑥) ∈ (𝐾𝐶𝐵))
6968r19.21bi 3130 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ran 𝐻) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
7057, 69jaodan 958 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑂𝑥 ∈ ran 𝐻)) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
7156, 70sylan2b 597 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑂 ∪ ran 𝐻)) → (𝑆𝑥) ∈ (𝐾𝐶𝐵))
7271ralrimiva 3105 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (𝑂 ∪ ran 𝐻)(𝑆𝑥) ∈ (𝐾𝐶𝐵))
73 mclsax.5 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ran 𝐿)
7412, 5msubf 33207 . . . . . . . . . . . 12 (𝑆 ∈ ran 𝐿𝑆:𝐸𝐸)
7573, 74syl 17 . . . . . . . . . . 11 (𝜑𝑆:𝐸𝐸)
7675ffund 6549 . . . . . . . . . 10 (𝜑 → Fun 𝑆)
774, 5, 28elmpst 33211 . . . . . . . . . . . . . . 15 (⟨𝑀, 𝑂, 𝑃⟩ ∈ (mPreSt‘𝑇) ↔ ((𝑀𝐷𝑀 = 𝑀) ∧ (𝑂𝐸𝑂 ∈ Fin) ∧ 𝑃𝐸))
7835, 77sylib 221 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀𝐷𝑀 = 𝑀) ∧ (𝑂𝐸𝑂 ∈ Fin) ∧ 𝑃𝐸))
7978simp2d 1145 . . . . . . . . . . . . 13 (𝜑 → (𝑂𝐸𝑂 ∈ Fin))
8079simpld 498 . . . . . . . . . . . 12 (𝜑𝑂𝐸)
8175fdmd 6556 . . . . . . . . . . . 12 (𝜑 → dom 𝑆 = 𝐸)
8280, 81sseqtrrd 3942 . . . . . . . . . . 11 (𝜑𝑂 ⊆ dom 𝑆)
8362frnd 6553 . . . . . . . . . . . 12 (𝜑 → ran 𝐻𝐸)
8483, 81sseqtrrd 3942 . . . . . . . . . . 11 (𝜑 → ran 𝐻 ⊆ dom 𝑆)
8582, 84unssd 4100 . . . . . . . . . 10 (𝜑 → (𝑂 ∪ ran 𝐻) ⊆ dom 𝑆)
86 funimass4 6777 . . . . . . . . . 10 ((Fun 𝑆 ∧ (𝑂 ∪ ran 𝐻) ⊆ dom 𝑆) → ((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ↔ ∀𝑥 ∈ (𝑂 ∪ ran 𝐻)(𝑆𝑥) ∈ (𝐾𝐶𝐵)))
8776, 85, 86syl2anc 587 . . . . . . . . 9 (𝜑 → ((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ↔ ∀𝑥 ∈ (𝑂 ∪ ran 𝐻)(𝑆𝑥) ∈ (𝐾𝐶𝐵)))
8872, 87mpbird 260 . . . . . . . 8 (𝜑 → (𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵))
89 mclsax.8 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑀𝑦𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))))) → 𝑎𝐾𝑏)
90893exp2 1356 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑀𝑦 → (𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) → (𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦))) → 𝑎𝐾𝑏))))
9190imp4b 425 . . . . . . . . . . . 12 ((𝜑𝑥𝑀𝑦) → ((𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦)))) → 𝑎𝐾𝑏))
9291ralrimivv 3111 . . . . . . . . . . 11 ((𝜑𝑥𝑀𝑦) → ∀𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥)))∀𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦)))𝑎𝐾𝑏)
93 dfss3 3888 . . . . . . . . . . . 12 (((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾 ↔ ∀𝑧 ∈ ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦))))𝑧𝐾)
94 eleq1 2825 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑎, 𝑏⟩ → (𝑧𝐾 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝐾))
95 df-br 5054 . . . . . . . . . . . . . 14 (𝑎𝐾𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝐾)
9694, 95bitr4di 292 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑎, 𝑏⟩ → (𝑧𝐾𝑎𝐾𝑏))
9796ralxp 5710 . . . . . . . . . . . 12 (∀𝑧 ∈ ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦))))𝑧𝐾 ↔ ∀𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥)))∀𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦)))𝑎𝐾𝑏)
9893, 97bitri 278 . . . . . . . . . . 11 (((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾 ↔ ∀𝑎 ∈ (𝑊‘(𝑆‘(𝐻𝑥)))∀𝑏 ∈ (𝑊‘(𝑆‘(𝐻𝑦)))𝑎𝐾𝑏)
9992, 98sylibr 237 . . . . . . . . . 10 ((𝜑𝑥𝑀𝑦) → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)
10099ex 416 . . . . . . . . 9 (𝜑 → (𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾))
101100alrimivv 1936 . . . . . . . 8 (𝜑 → ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾))
10288, 101jca 515 . . . . . . 7 (𝜑 → ((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)))
103 imaeq1 5924 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑠 “ (𝑂 ∪ ran 𝐻)) = (𝑆 “ (𝑂 ∪ ran 𝐻)))
104103sseq1d 3932 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ↔ (𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵)))
105 fveq1 6716 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑆 → (𝑠‘(𝐻𝑥)) = (𝑆‘(𝐻𝑥)))
106105fveq2d 6721 . . . . . . . . . . . . . . 15 (𝑠 = 𝑆 → (𝑊‘(𝑠‘(𝐻𝑥))) = (𝑊‘(𝑆‘(𝐻𝑥))))
107 fveq1 6716 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑆 → (𝑠‘(𝐻𝑦)) = (𝑆‘(𝐻𝑦)))
108107fveq2d 6721 . . . . . . . . . . . . . . 15 (𝑠 = 𝑆 → (𝑊‘(𝑠‘(𝐻𝑦))) = (𝑊‘(𝑆‘(𝐻𝑦))))
109106, 108xpeq12d 5582 . . . . . . . . . . . . . 14 (𝑠 = 𝑆 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) = ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))))
110109sseq1d 3932 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾 ↔ ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾))
111110imbi2d 344 . . . . . . . . . . . 12 (𝑠 = 𝑆 → ((𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) ↔ (𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)))
1121112albidv 1931 . . . . . . . . . . 11 (𝑠 = 𝑆 → (∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) ↔ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)))
113104, 112anbi12d 634 . . . . . . . . . 10 (𝑠 = 𝑆 → (((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) ↔ ((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾))))
114 fveq1 6716 . . . . . . . . . . 11 (𝑠 = 𝑆 → (𝑠𝑃) = (𝑆𝑃))
115114eleq1d 2822 . . . . . . . . . 10 (𝑠 = 𝑆 → ((𝑠𝑃) ∈ 𝑐 ↔ (𝑆𝑃) ∈ 𝑐))
116113, 115imbi12d 348 . . . . . . . . 9 (𝑠 = 𝑆 → ((((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐) ↔ (((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑆𝑃) ∈ 𝑐)))
117116rspcv 3532 . . . . . . . 8 (𝑆 ∈ ran 𝐿 → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐) → (((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑆𝑃) ∈ 𝑐)))
11873, 117syl 17 . . . . . . 7 (𝜑 → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐) → (((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻𝑥))) × (𝑊‘(𝑆‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑆𝑃) ∈ 𝑐)))
119102, 118mpid 44 . . . . . 6 (𝜑 → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐) → (𝑆𝑃) ∈ 𝑐))
12033, 119embantd 59 . . . . 5 (𝜑 → ((⟨𝑀, 𝑂, 𝑃⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑃) ∈ 𝑐)) → (𝑆𝑃) ∈ 𝑐))
12127, 55, 1203syld 60 . . . 4 (𝜑 → (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → (𝑆𝑃) ∈ 𝑐))
122121alrimiv 1935 . . 3 (𝜑 → ∀𝑐(((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → (𝑆𝑃) ∈ 𝑐))
123 fvex 6730 . . . 4 (𝑆𝑃) ∈ V
124123elintab 4870 . . 3 ((𝑆𝑃) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ↔ ∀𝑐(((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) → (𝑆𝑃) ∈ 𝑐))
125122, 124sylibr 237 . 2 (𝜑 → (𝑆𝑃) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
126125, 14eleqtrrd 2841 1 (𝜑 → (𝑆𝑃) ∈ (𝐾𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847  w3a 1089  wal 1541   = wceq 1543  wcel 2110  {cab 2714  wral 3061  Vcvv 3408  cun 3864  wss 3866  cop 4547  cotp 4549   cint 4859   class class class wbr 5053   × cxp 5549  ccnv 5550  dom cdm 5551  ran crn 5552  cima 5554  Fun wfun 6374   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  Fincfn 8626  mVRcmvar 33136  mAxcmax 33140  mExcmex 33142  mDVcmdv 33143  mVarscmvrs 33144  mSubstcmsub 33146  mVHcmvh 33147  mPreStcmpst 33148  mStatcmsta 33150  mFScmfs 33151  mClscmcls 33152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-ot 4550  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-word 14070  df-concat 14126  df-s1 14153  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-0g 16946  df-gsum 16947  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-frmd 18276  df-mrex 33161  df-mex 33162  df-mrsub 33165  df-msub 33166  df-mvh 33167  df-mpst 33168  df-msr 33169  df-msta 33170  df-mfs 33171  df-mcls 33172
This theorem is referenced by:  mclsppslem  33258
  Copyright terms: Public domain W3C validator