Step | Hyp | Ref
| Expression |
1 | | abid 2718 |
. . . . . . . 8
⊢ (𝑐 ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ↔ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))) |
2 | | intss1 4874 |
. . . . . . . 8
⊢ (𝑐 ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} → ∩
{𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ⊆ 𝑐) |
3 | 1, 2 | sylbir 238 |
. . . . . . 7
⊢ (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐))) → ∩
{𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ⊆ 𝑐) |
4 | | mclsval.d |
. . . . . . . . 9
⊢ 𝐷 = (mDV‘𝑇) |
5 | | mclsval.e |
. . . . . . . . 9
⊢ 𝐸 = (mEx‘𝑇) |
6 | | mclsval.c |
. . . . . . . . 9
⊢ 𝐶 = (mCls‘𝑇) |
7 | | mclsval.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ mFS) |
8 | | mclsval.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ⊆ 𝐷) |
9 | | mclsval.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ⊆ 𝐸) |
10 | | mclsax.h |
. . . . . . . . 9
⊢ 𝐻 = (mVH‘𝑇) |
11 | | mclsax.a |
. . . . . . . . 9
⊢ 𝐴 = (mAx‘𝑇) |
12 | | mclsax.l |
. . . . . . . . 9
⊢ 𝐿 = (mSubst‘𝑇) |
13 | | mclsax.w |
. . . . . . . . 9
⊢ 𝑊 = (mVars‘𝑇) |
14 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | mclsval 33238 |
. . . . . . . 8
⊢ (𝜑 → (𝐾𝐶𝐵) = ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))}) |
15 | 14 | sseq1d 3932 |
. . . . . . 7
⊢ (𝜑 → ((𝐾𝐶𝐵) ⊆ 𝑐 ↔ ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ⊆ 𝑐)) |
16 | 3, 15 | syl5ibr 249 |
. . . . . 6
⊢ (𝜑 → (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐))) → (𝐾𝐶𝐵) ⊆ 𝑐)) |
17 | | sstr2 3908 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) → ((𝐾𝐶𝐵) ⊆ 𝑐 → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐)) |
18 | 17 | com12 32 |
. . . . . . . . . . . . . 14
⊢ ((𝐾𝐶𝐵) ⊆ 𝑐 → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐)) |
19 | 18 | anim1d 614 |
. . . . . . . . . . . . 13
⊢ ((𝐾𝐶𝐵) ⊆ 𝑐 → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)))) |
20 | 19 | imim1d 82 |
. . . . . . . . . . . 12
⊢ ((𝐾𝐶𝐵) ⊆ 𝑐 → ((((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐))) |
21 | 20 | ralimdv 3101 |
. . . . . . . . . . 11
⊢ ((𝐾𝐶𝐵) ⊆ 𝑐 → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐) → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐))) |
22 | 21 | imim2d 57 |
. . . . . . . . . 10
⊢ ((𝐾𝐶𝐵) ⊆ 𝑐 → ((〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)) → (〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))) |
23 | 22 | alimdv 1924 |
. . . . . . . . 9
⊢ ((𝐾𝐶𝐵) ⊆ 𝑐 → (∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)) → ∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))) |
24 | 23 | 2alimdv 1926 |
. . . . . . . 8
⊢ ((𝐾𝐶𝐵) ⊆ 𝑐 → (∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)) → ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))) |
25 | 24 | com12 32 |
. . . . . . 7
⊢
(∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)) → ((𝐾𝐶𝐵) ⊆ 𝑐 → ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))) |
26 | 25 | adantl 485 |
. . . . . 6
⊢ (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐))) → ((𝐾𝐶𝐵) ⊆ 𝑐 → ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))) |
27 | 16, 26 | sylcom 30 |
. . . . 5
⊢ (𝜑 → (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐))) → ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))) |
28 | | eqid 2737 |
. . . . . . . 8
⊢
(mPreSt‘𝑇) =
(mPreSt‘𝑇) |
29 | | eqid 2737 |
. . . . . . . 8
⊢
(mStat‘𝑇) =
(mStat‘𝑇) |
30 | 28, 29 | mstapst 33222 |
. . . . . . 7
⊢
(mStat‘𝑇)
⊆ (mPreSt‘𝑇) |
31 | 11, 29 | maxsta 33229 |
. . . . . . . . 9
⊢ (𝑇 ∈ mFS → 𝐴 ⊆ (mStat‘𝑇)) |
32 | 7, 31 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ (mStat‘𝑇)) |
33 | | mclsax.4 |
. . . . . . . 8
⊢ (𝜑 → 〈𝑀, 𝑂, 𝑃〉 ∈ 𝐴) |
34 | 32, 33 | sseldd 3902 |
. . . . . . 7
⊢ (𝜑 → 〈𝑀, 𝑂, 𝑃〉 ∈ (mStat‘𝑇)) |
35 | 30, 34 | sseldi 3899 |
. . . . . 6
⊢ (𝜑 → 〈𝑀, 𝑂, 𝑃〉 ∈ (mPreSt‘𝑇)) |
36 | 28 | mpstrcl 33216 |
. . . . . 6
⊢
(〈𝑀, 𝑂, 𝑃〉 ∈ (mPreSt‘𝑇) → (𝑀 ∈ V ∧ 𝑂 ∈ V ∧ 𝑃 ∈ V)) |
37 | | simp1 1138 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑜 = 𝑂 ∧ 𝑝 = 𝑃) → 𝑚 = 𝑀) |
38 | | simp2 1139 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑜 = 𝑂 ∧ 𝑝 = 𝑃) → 𝑜 = 𝑂) |
39 | | simp3 1140 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑜 = 𝑂 ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃) |
40 | 37, 38, 39 | oteq123d 4799 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑜 = 𝑂 ∧ 𝑝 = 𝑃) → 〈𝑚, 𝑜, 𝑝〉 = 〈𝑀, 𝑂, 𝑃〉) |
41 | 40 | eleq1d 2822 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑜 = 𝑂 ∧ 𝑝 = 𝑃) → (〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 ↔ 〈𝑀, 𝑂, 𝑃〉 ∈ 𝐴)) |
42 | 38 | uneq1d 4076 |
. . . . . . . . . . . . 13
⊢ ((𝑚 = 𝑀 ∧ 𝑜 = 𝑂 ∧ 𝑝 = 𝑃) → (𝑜 ∪ ran 𝐻) = (𝑂 ∪ ran 𝐻)) |
43 | 42 | imaeq2d 5929 |
. . . . . . . . . . . 12
⊢ ((𝑚 = 𝑀 ∧ 𝑜 = 𝑂 ∧ 𝑝 = 𝑃) → (𝑠 “ (𝑜 ∪ ran 𝐻)) = (𝑠 “ (𝑂 ∪ ran 𝐻))) |
44 | 43 | sseq1d 3932 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑜 = 𝑂 ∧ 𝑝 = 𝑃) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ↔ (𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵))) |
45 | 37 | breqd 5064 |
. . . . . . . . . . . . 13
⊢ ((𝑚 = 𝑀 ∧ 𝑜 = 𝑂 ∧ 𝑝 = 𝑃) → (𝑥𝑚𝑦 ↔ 𝑥𝑀𝑦)) |
46 | 45 | imbi1d 345 |
. . . . . . . . . . . 12
⊢ ((𝑚 = 𝑀 ∧ 𝑜 = 𝑂 ∧ 𝑝 = 𝑃) → ((𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾) ↔ (𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾))) |
47 | 46 | 2albidv 1931 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑜 = 𝑂 ∧ 𝑝 = 𝑃) → (∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾) ↔ ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾))) |
48 | 44, 47 | anbi12d 634 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑜 = 𝑂 ∧ 𝑝 = 𝑃) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) ↔ ((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)))) |
49 | 39 | fveq2d 6721 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑜 = 𝑂 ∧ 𝑝 = 𝑃) → (𝑠‘𝑝) = (𝑠‘𝑃)) |
50 | 49 | eleq1d 2822 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑜 = 𝑂 ∧ 𝑝 = 𝑃) → ((𝑠‘𝑝) ∈ 𝑐 ↔ (𝑠‘𝑃) ∈ 𝑐)) |
51 | 48, 50 | imbi12d 348 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑜 = 𝑂 ∧ 𝑝 = 𝑃) → ((((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐) ↔ (((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑃) ∈ 𝑐))) |
52 | 51 | ralbidv 3118 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑜 = 𝑂 ∧ 𝑝 = 𝑃) → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐) ↔ ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑃) ∈ 𝑐))) |
53 | 41, 52 | imbi12d 348 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑜 = 𝑂 ∧ 𝑝 = 𝑃) → ((〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)) ↔ (〈𝑀, 𝑂, 𝑃〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑃) ∈ 𝑐)))) |
54 | 53 | spc3gv 3519 |
. . . . . 6
⊢ ((𝑀 ∈ V ∧ 𝑂 ∈ V ∧ 𝑃 ∈ V) → (∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)) → (〈𝑀, 𝑂, 𝑃〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑃) ∈ 𝑐)))) |
55 | 35, 36, 54 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)) → (〈𝑀, 𝑂, 𝑃〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑃) ∈ 𝑐)))) |
56 | | elun 4063 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝑂 ∪ ran 𝐻) ↔ (𝑥 ∈ 𝑂 ∨ 𝑥 ∈ ran 𝐻)) |
57 | | mclsax.6 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) |
58 | | mclsax.7 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)) |
59 | 58 | ralrimiva 3105 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑣 ∈ 𝑉 (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)) |
60 | | mclsax.v |
. . . . . . . . . . . . . . . . 17
⊢ 𝑉 = (mVR‘𝑇) |
61 | 60, 5, 10 | mvhf 33233 |
. . . . . . . . . . . . . . . 16
⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) |
62 | 7, 61 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐻:𝑉⟶𝐸) |
63 | | ffn 6545 |
. . . . . . . . . . . . . . 15
⊢ (𝐻:𝑉⟶𝐸 → 𝐻 Fn 𝑉) |
64 | | fveq2 6717 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝐻‘𝑣) → (𝑆‘𝑥) = (𝑆‘(𝐻‘𝑣))) |
65 | 64 | eleq1d 2822 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝐻‘𝑣) → ((𝑆‘𝑥) ∈ (𝐾𝐶𝐵) ↔ (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵))) |
66 | 65 | ralrn 6907 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 Fn 𝑉 → (∀𝑥 ∈ ran 𝐻(𝑆‘𝑥) ∈ (𝐾𝐶𝐵) ↔ ∀𝑣 ∈ 𝑉 (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵))) |
67 | 62, 63, 66 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (∀𝑥 ∈ ran 𝐻(𝑆‘𝑥) ∈ (𝐾𝐶𝐵) ↔ ∀𝑣 ∈ 𝑉 (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵))) |
68 | 59, 67 | mpbird 260 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑥 ∈ ran 𝐻(𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) |
69 | 68 | r19.21bi 3130 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐻) → (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) |
70 | 57, 69 | jaodan 958 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑂 ∨ 𝑥 ∈ ran 𝐻)) → (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) |
71 | 56, 70 | sylan2b 597 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∪ ran 𝐻)) → (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) |
72 | 71 | ralrimiva 3105 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ (𝑂 ∪ ran 𝐻)(𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) |
73 | | mclsax.5 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ ran 𝐿) |
74 | 12, 5 | msubf 33207 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ ran 𝐿 → 𝑆:𝐸⟶𝐸) |
75 | 73, 74 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆:𝐸⟶𝐸) |
76 | 75 | ffund 6549 |
. . . . . . . . . 10
⊢ (𝜑 → Fun 𝑆) |
77 | 4, 5, 28 | elmpst 33211 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑀, 𝑂, 𝑃〉 ∈ (mPreSt‘𝑇) ↔ ((𝑀 ⊆ 𝐷 ∧ ◡𝑀 = 𝑀) ∧ (𝑂 ⊆ 𝐸 ∧ 𝑂 ∈ Fin) ∧ 𝑃 ∈ 𝐸)) |
78 | 35, 77 | sylib 221 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑀 ⊆ 𝐷 ∧ ◡𝑀 = 𝑀) ∧ (𝑂 ⊆ 𝐸 ∧ 𝑂 ∈ Fin) ∧ 𝑃 ∈ 𝐸)) |
79 | 78 | simp2d 1145 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑂 ⊆ 𝐸 ∧ 𝑂 ∈ Fin)) |
80 | 79 | simpld 498 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑂 ⊆ 𝐸) |
81 | 75 | fdmd 6556 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom 𝑆 = 𝐸) |
82 | 80, 81 | sseqtrrd 3942 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑂 ⊆ dom 𝑆) |
83 | 62 | frnd 6553 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran 𝐻 ⊆ 𝐸) |
84 | 83, 81 | sseqtrrd 3942 |
. . . . . . . . . . 11
⊢ (𝜑 → ran 𝐻 ⊆ dom 𝑆) |
85 | 82, 84 | unssd 4100 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑂 ∪ ran 𝐻) ⊆ dom 𝑆) |
86 | | funimass4 6777 |
. . . . . . . . . 10
⊢ ((Fun
𝑆 ∧ (𝑂 ∪ ran 𝐻) ⊆ dom 𝑆) → ((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ↔ ∀𝑥 ∈ (𝑂 ∪ ran 𝐻)(𝑆‘𝑥) ∈ (𝐾𝐶𝐵))) |
87 | 76, 85, 86 | syl2anc 587 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ↔ ∀𝑥 ∈ (𝑂 ∪ ran 𝐻)(𝑆‘𝑥) ∈ (𝐾𝐶𝐵))) |
88 | 72, 87 | mpbird 260 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵)) |
89 | | mclsax.8 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥𝑀𝑦 ∧ 𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦))))) → 𝑎𝐾𝑏) |
90 | 89 | 3exp2 1356 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥𝑀𝑦 → (𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥))) → (𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦))) → 𝑎𝐾𝑏)))) |
91 | 90 | imp4b 425 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥𝑀𝑦) → ((𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦)))) → 𝑎𝐾𝑏)) |
92 | 91 | ralrimivv 3111 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥𝑀𝑦) → ∀𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥)))∀𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦)))𝑎𝐾𝑏) |
93 | | dfss3 3888 |
. . . . . . . . . . . 12
⊢ (((𝑊‘(𝑆‘(𝐻‘𝑥))) × (𝑊‘(𝑆‘(𝐻‘𝑦)))) ⊆ 𝐾 ↔ ∀𝑧 ∈ ((𝑊‘(𝑆‘(𝐻‘𝑥))) × (𝑊‘(𝑆‘(𝐻‘𝑦))))𝑧 ∈ 𝐾) |
94 | | eleq1 2825 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 〈𝑎, 𝑏〉 → (𝑧 ∈ 𝐾 ↔ 〈𝑎, 𝑏〉 ∈ 𝐾)) |
95 | | df-br 5054 |
. . . . . . . . . . . . . 14
⊢ (𝑎𝐾𝑏 ↔ 〈𝑎, 𝑏〉 ∈ 𝐾) |
96 | 94, 95 | bitr4di 292 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 〈𝑎, 𝑏〉 → (𝑧 ∈ 𝐾 ↔ 𝑎𝐾𝑏)) |
97 | 96 | ralxp 5710 |
. . . . . . . . . . . 12
⊢
(∀𝑧 ∈
((𝑊‘(𝑆‘(𝐻‘𝑥))) × (𝑊‘(𝑆‘(𝐻‘𝑦))))𝑧 ∈ 𝐾 ↔ ∀𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥)))∀𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦)))𝑎𝐾𝑏) |
98 | 93, 97 | bitri 278 |
. . . . . . . . . . 11
⊢ (((𝑊‘(𝑆‘(𝐻‘𝑥))) × (𝑊‘(𝑆‘(𝐻‘𝑦)))) ⊆ 𝐾 ↔ ∀𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥)))∀𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦)))𝑎𝐾𝑏) |
99 | 92, 98 | sylibr 237 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥𝑀𝑦) → ((𝑊‘(𝑆‘(𝐻‘𝑥))) × (𝑊‘(𝑆‘(𝐻‘𝑦)))) ⊆ 𝐾) |
100 | 99 | ex 416 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻‘𝑥))) × (𝑊‘(𝑆‘(𝐻‘𝑦)))) ⊆ 𝐾)) |
101 | 100 | alrimivv 1936 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻‘𝑥))) × (𝑊‘(𝑆‘(𝐻‘𝑦)))) ⊆ 𝐾)) |
102 | 88, 101 | jca 515 |
. . . . . . 7
⊢ (𝜑 → ((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻‘𝑥))) × (𝑊‘(𝑆‘(𝐻‘𝑦)))) ⊆ 𝐾))) |
103 | | imaeq1 5924 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑆 → (𝑠 “ (𝑂 ∪ ran 𝐻)) = (𝑆 “ (𝑂 ∪ ran 𝐻))) |
104 | 103 | sseq1d 3932 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑆 → ((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ↔ (𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵))) |
105 | | fveq1 6716 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = 𝑆 → (𝑠‘(𝐻‘𝑥)) = (𝑆‘(𝐻‘𝑥))) |
106 | 105 | fveq2d 6721 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = 𝑆 → (𝑊‘(𝑠‘(𝐻‘𝑥))) = (𝑊‘(𝑆‘(𝐻‘𝑥)))) |
107 | | fveq1 6716 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = 𝑆 → (𝑠‘(𝐻‘𝑦)) = (𝑆‘(𝐻‘𝑦))) |
108 | 107 | fveq2d 6721 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = 𝑆 → (𝑊‘(𝑠‘(𝐻‘𝑦))) = (𝑊‘(𝑆‘(𝐻‘𝑦)))) |
109 | 106, 108 | xpeq12d 5582 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑆 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) = ((𝑊‘(𝑆‘(𝐻‘𝑥))) × (𝑊‘(𝑆‘(𝐻‘𝑦))))) |
110 | 109 | sseq1d 3932 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑆 → (((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾 ↔ ((𝑊‘(𝑆‘(𝐻‘𝑥))) × (𝑊‘(𝑆‘(𝐻‘𝑦)))) ⊆ 𝐾)) |
111 | 110 | imbi2d 344 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑆 → ((𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾) ↔ (𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻‘𝑥))) × (𝑊‘(𝑆‘(𝐻‘𝑦)))) ⊆ 𝐾))) |
112 | 111 | 2albidv 1931 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑆 → (∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾) ↔ ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻‘𝑥))) × (𝑊‘(𝑆‘(𝐻‘𝑦)))) ⊆ 𝐾))) |
113 | 104, 112 | anbi12d 634 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → (((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) ↔ ((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻‘𝑥))) × (𝑊‘(𝑆‘(𝐻‘𝑦)))) ⊆ 𝐾)))) |
114 | | fveq1 6716 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑆 → (𝑠‘𝑃) = (𝑆‘𝑃)) |
115 | 114 | eleq1d 2822 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → ((𝑠‘𝑃) ∈ 𝑐 ↔ (𝑆‘𝑃) ∈ 𝑐)) |
116 | 113, 115 | imbi12d 348 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → ((((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑃) ∈ 𝑐) ↔ (((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻‘𝑥))) × (𝑊‘(𝑆‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑆‘𝑃) ∈ 𝑐))) |
117 | 116 | rspcv 3532 |
. . . . . . . 8
⊢ (𝑆 ∈ ran 𝐿 → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑃) ∈ 𝑐) → (((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻‘𝑥))) × (𝑊‘(𝑆‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑆‘𝑃) ∈ 𝑐))) |
118 | 73, 117 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑃) ∈ 𝑐) → (((𝑆 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑆‘(𝐻‘𝑥))) × (𝑊‘(𝑆‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑆‘𝑃) ∈ 𝑐))) |
119 | 102, 118 | mpid 44 |
. . . . . 6
⊢ (𝜑 → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑃) ∈ 𝑐) → (𝑆‘𝑃) ∈ 𝑐)) |
120 | 33, 119 | embantd 59 |
. . . . 5
⊢ (𝜑 → ((〈𝑀, 𝑂, 𝑃〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑂 ∪ ran 𝐻)) ⊆ (𝐾𝐶𝐵) ∧ ∀𝑥∀𝑦(𝑥𝑀𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑃) ∈ 𝑐)) → (𝑆‘𝑃) ∈ 𝑐)) |
121 | 27, 55, 120 | 3syld 60 |
. . . 4
⊢ (𝜑 → (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐))) → (𝑆‘𝑃) ∈ 𝑐)) |
122 | 121 | alrimiv 1935 |
. . 3
⊢ (𝜑 → ∀𝑐(((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐))) → (𝑆‘𝑃) ∈ 𝑐)) |
123 | | fvex 6730 |
. . . 4
⊢ (𝑆‘𝑃) ∈ V |
124 | 123 | elintab 4870 |
. . 3
⊢ ((𝑆‘𝑃) ∈ ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ↔ ∀𝑐(((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐))) → (𝑆‘𝑃) ∈ 𝑐)) |
125 | 122, 124 | sylibr 237 |
. 2
⊢ (𝜑 → (𝑆‘𝑃) ∈ ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))}) |
126 | 125, 14 | eleqtrrd 2841 |
1
⊢ (𝜑 → (𝑆‘𝑃) ∈ (𝐾𝐶𝐵)) |