| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reurex | Structured version Visualization version GIF version | ||
| Description: Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.) |
| Ref | Expression |
|---|---|
| reurex | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3358 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wrex 3054 ∃!wreu 3354 ∃*wrmo 3355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2563 df-rex 3055 df-rmo 3356 df-reu 3357 |
| This theorem is referenced by: 2reu2rex 3370 reu3 3701 reuxfr1d 3724 2rexreu 3736 sbcreu 3842 reu0 4327 2reu4 4489 weniso 7332 oawordex 8524 oaabs 8615 oaabs2 8616 supval2 9413 fisup2g 9427 fiinf2g 9460 nqerf 10890 qbtwnre 13166 modprm0 16783 issrgid 20120 isringid 20187 isringrng 20203 lspsneu 21040 frgpcyg 21490 qtophmeo 23711 pjthlem2 25345 dyadmax 25506 quotlem 26215 2sqreulem1 27364 2sqreunnlem1 27367 nfrgr2v 30208 2pthfrgrrn 30218 frgrncvvdeqlem9 30243 frgr2wwlkn0 30264 pjhthlem2 31328 cnlnadj 32015 2reu2rex1 32417 rmoxfrd 32429 cvmliftpht 35312 finorwe 37377 lcfl7N 41502 renegeulem 42364 resubeqsub 42425 requad1 47627 requad2 47628 uzlidlring 48227 reuxfr1dd 48799 lubeldm2 48948 glbeldm2 48949 upciclem4 49162 |
| Copyright terms: Public domain | W3C validator |