![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reurex | Structured version Visualization version GIF version |
Description: Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.) |
Ref | Expression |
---|---|
reurex | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu5 3390 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3076 ∃!wreu 3386 ∃*wrmo 3387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2572 df-rex 3077 df-rmo 3388 df-reu 3389 |
This theorem is referenced by: 2reu2rex 3402 reu3 3749 reuxfr1d 3772 2rexreu 3784 sbcreu 3898 reu0 4384 2reu4 4546 tz6.26OLD 6380 weniso 7390 oawordex 8613 oaabs 8704 oaabs2 8705 supval2 9524 fisup2g 9537 fiinf2g 9569 nqerf 10999 qbtwnre 13261 modprm0 16852 issrgid 20231 isringid 20294 isringrng 20310 lspsneu 21148 frgpcyg 21615 qtophmeo 23846 pjthlem2 25491 dyadmax 25652 quotlem 26360 2sqreulem1 27508 2sqreunnlem1 27511 nfrgr2v 30304 2pthfrgrrn 30314 frgrncvvdeqlem9 30339 frgr2wwlkn0 30360 pjhthlem2 31424 cnlnadj 32111 2reu2rex1 32509 rmoxfrd 32521 cvmliftpht 35286 finorwe 37348 lcfl7N 41458 renegeulem 42345 resubeqsub 42405 requad1 47496 requad2 47497 uzlidlring 47958 lubeldm2 48636 glbeldm2 48637 |
Copyright terms: Public domain | W3C validator |