| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reurex | Structured version Visualization version GIF version | ||
| Description: Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.) |
| Ref | Expression |
|---|---|
| reurex | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3347 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wrex 3053 ∃!wreu 3343 ∃*wrmo 3344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2562 df-rex 3054 df-rmo 3345 df-reu 3346 |
| This theorem is referenced by: 2reu2rex 3359 reu3 3689 reuxfr1d 3712 2rexreu 3724 sbcreu 3830 reu0 4314 2reu4 4476 weniso 7295 oawordex 8482 oaabs 8573 oaabs2 8574 supval2 9364 fisup2g 9378 fiinf2g 9411 nqerf 10843 qbtwnre 13119 modprm0 16735 issrgid 20107 isringid 20174 isringrng 20190 lspsneu 21048 frgpcyg 21498 qtophmeo 23720 pjthlem2 25354 dyadmax 25515 quotlem 26224 2sqreulem1 27373 2sqreunnlem1 27376 nfrgr2v 30234 2pthfrgrrn 30244 frgrncvvdeqlem9 30269 frgr2wwlkn0 30290 pjhthlem2 31354 cnlnadj 32041 2reu2rex1 32443 rmoxfrd 32455 cvmliftpht 35290 finorwe 37355 lcfl7N 41480 renegeulem 42342 resubeqsub 42403 requad1 47607 requad2 47608 uzlidlring 48220 reuxfr1dd 48792 lubeldm2 48941 glbeldm2 48942 upciclem4 49155 |
| Copyright terms: Public domain | W3C validator |