| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reurex | Structured version Visualization version GIF version | ||
| Description: Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.) |
| Ref | Expression |
|---|---|
| reurex | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3349 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wrex 3057 ∃!wreu 3345 ∃*wrmo 3346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2566 df-rex 3058 df-rmo 3347 df-reu 3348 |
| This theorem is referenced by: 2reu2rex 3359 reu3 3682 reuxfr1d 3705 2rexreu 3717 sbcreu 3823 reu0 4310 2reu4 4472 weniso 7294 oawordex 8478 oaabs 8569 oaabs2 8570 supval2 9346 fisup2g 9360 fiinf2g 9393 nqerf 10828 qbtwnre 13100 modprm0 16719 issrgid 20124 isringid 20191 isringrng 20207 lspsneu 21062 frgpcyg 21512 qtophmeo 23733 pjthlem2 25366 dyadmax 25527 quotlem 26236 2sqreulem1 27385 2sqreunnlem1 27388 nfrgr2v 30254 2pthfrgrrn 30264 frgrncvvdeqlem9 30289 frgr2wwlkn0 30310 pjhthlem2 31374 cnlnadj 32061 2reu2rex1 32462 rmoxfrd 32474 cvmliftpht 35383 finorwe 37447 lcfl7N 41620 renegeulem 42487 resubeqsub 42548 requad1 47746 requad2 47747 uzlidlring 48359 reuxfr1dd 48931 lubeldm2 49080 glbeldm2 49081 upciclem4 49294 |
| Copyright terms: Public domain | W3C validator |