![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reurex | Structured version Visualization version GIF version |
Description: Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.) |
Ref | Expression |
---|---|
reurex | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu5 3380 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3068 ∃!wreu 3376 ∃*wrmo 3377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2567 df-rex 3069 df-rmo 3378 df-reu 3379 |
This theorem is referenced by: 2reu2rex 3392 reu3 3736 reuxfr1d 3759 2rexreu 3771 sbcreu 3885 reu0 4367 2reu4 4529 tz6.26OLD 6371 weniso 7374 oawordex 8594 oaabs 8685 oaabs2 8686 supval2 9493 fisup2g 9506 fiinf2g 9538 nqerf 10968 qbtwnre 13238 modprm0 16839 issrgid 20222 isringid 20285 isringrng 20301 lspsneu 21143 frgpcyg 21610 qtophmeo 23841 pjthlem2 25486 dyadmax 25647 quotlem 26357 2sqreulem1 27505 2sqreunnlem1 27508 nfrgr2v 30301 2pthfrgrrn 30311 frgrncvvdeqlem9 30336 frgr2wwlkn0 30357 pjhthlem2 31421 cnlnadj 32108 2reu2rex1 32509 rmoxfrd 32521 cvmliftpht 35303 finorwe 37365 lcfl7N 41484 renegeulem 42376 resubeqsub 42436 requad1 47547 requad2 47548 uzlidlring 48079 reuxfr1dd 48655 lubeldm2 48753 glbeldm2 48754 upciclem4 48815 |
Copyright terms: Public domain | W3C validator |