| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reurex | Structured version Visualization version GIF version | ||
| Description: Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.) |
| Ref | Expression |
|---|---|
| reurex | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3356 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wrex 3053 ∃!wreu 3352 ∃*wrmo 3353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2562 df-rex 3054 df-rmo 3354 df-reu 3355 |
| This theorem is referenced by: 2reu2rex 3368 reu3 3698 reuxfr1d 3721 2rexreu 3733 sbcreu 3839 reu0 4324 2reu4 4486 weniso 7329 oawordex 8521 oaabs 8612 oaabs2 8613 supval2 9406 fisup2g 9420 fiinf2g 9453 nqerf 10883 qbtwnre 13159 modprm0 16776 issrgid 20113 isringid 20180 isringrng 20196 lspsneu 21033 frgpcyg 21483 qtophmeo 23704 pjthlem2 25338 dyadmax 25499 quotlem 26208 2sqreulem1 27357 2sqreunnlem1 27360 nfrgr2v 30201 2pthfrgrrn 30211 frgrncvvdeqlem9 30236 frgr2wwlkn0 30257 pjhthlem2 31321 cnlnadj 32008 2reu2rex1 32410 rmoxfrd 32422 cvmliftpht 35305 finorwe 37370 lcfl7N 41495 renegeulem 42357 resubeqsub 42418 requad1 47623 requad2 47624 uzlidlring 48223 reuxfr1dd 48795 lubeldm2 48944 glbeldm2 48945 upciclem4 49158 |
| Copyright terms: Public domain | W3C validator |