Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reurex | Structured version Visualization version GIF version |
Description: Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.) |
Ref | Expression |
---|---|
reurex | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu5 3361 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
2 | 1 | simplbi 498 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3065 ∃!wreu 3066 ∃*wrmo 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-eu 2569 df-rex 3070 df-rmo 3071 df-reu 3072 |
This theorem is referenced by: 2reu2rex 3363 reu3 3662 reuxfr1d 3685 2rexreu 3697 sbcreu 3809 reu0 4292 2reu4 4457 tz6.26OLD 6251 weniso 7225 oawordex 8388 oaabs 8478 oaabs2 8479 supval2 9214 fisup2g 9227 fiinf2g 9259 nqerf 10686 qbtwnre 12933 modprm0 16506 issrgid 19759 isringid 19812 lspsneu 20385 frgpcyg 20781 qtophmeo 22968 pjthlem2 24602 dyadmax 24762 quotlem 25460 2sqreulem1 26594 2sqreunnlem1 26597 nfrgr2v 28636 2pthfrgrrn 28646 frgrncvvdeqlem9 28671 frgr2wwlkn0 28692 pjhthlem2 29754 cnlnadj 30441 2reu2rex1 30829 rmoxfrd 30841 cvmliftpht 33280 finorwe 35553 lcfl7N 39515 renegeulem 40352 resubeqsub 40411 requad1 45074 requad2 45075 isringrng 45439 uzlidlring 45487 lubeldm2 46250 glbeldm2 46251 |
Copyright terms: Public domain | W3C validator |