| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reurex | Structured version Visualization version GIF version | ||
| Description: Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.) |
| Ref | Expression |
|---|---|
| reurex | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3348 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wrex 3056 ∃!wreu 3344 ∃*wrmo 3345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2564 df-rex 3057 df-rmo 3346 df-reu 3347 |
| This theorem is referenced by: 2reu2rex 3358 reu3 3686 reuxfr1d 3709 2rexreu 3721 sbcreu 3827 reu0 4311 2reu4 4473 weniso 7288 oawordex 8472 oaabs 8563 oaabs2 8564 supval2 9339 fisup2g 9353 fiinf2g 9386 nqerf 10818 qbtwnre 13095 modprm0 16714 issrgid 20120 isringid 20187 isringrng 20203 lspsneu 21058 frgpcyg 21508 qtophmeo 23730 pjthlem2 25363 dyadmax 25524 quotlem 26233 2sqreulem1 27382 2sqreunnlem1 27385 nfrgr2v 30247 2pthfrgrrn 30257 frgrncvvdeqlem9 30282 frgr2wwlkn0 30303 pjhthlem2 31367 cnlnadj 32054 2reu2rex1 32455 rmoxfrd 32467 cvmliftpht 35350 finorwe 37415 lcfl7N 41539 renegeulem 42401 resubeqsub 42462 requad1 47652 requad2 47653 uzlidlring 48265 reuxfr1dd 48837 lubeldm2 48986 glbeldm2 48987 upciclem4 49200 |
| Copyright terms: Public domain | W3C validator |