Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reurex | Structured version Visualization version GIF version |
Description: Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.) |
Ref | Expression |
---|---|
reurex | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu5 3351 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3064 ∃!wreu 3065 ∃*wrmo 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-eu 2569 df-rex 3069 df-reu 3070 df-rmo 3071 |
This theorem is referenced by: 2reu2rex 3353 reu3 3657 reuxfr1d 3680 2rexreu 3692 sbcreu 3805 reu0 4289 2reu4 4454 tz6.26OLD 6236 weniso 7205 oawordex 8350 oaabs 8438 oaabs2 8439 supval2 9144 fisup2g 9157 fiinf2g 9189 nqerf 10617 qbtwnre 12862 modprm0 16434 issrgid 19674 isringid 19727 lspsneu 20300 frgpcyg 20693 qtophmeo 22876 pjthlem2 24507 dyadmax 24667 quotlem 25365 2sqreulem1 26499 2sqreunnlem1 26502 nfrgr2v 28537 2pthfrgrrn 28547 frgrncvvdeqlem9 28572 frgr2wwlkn0 28593 pjhthlem2 29655 cnlnadj 30342 2reu2rex1 30730 rmoxfrd 30742 cvmliftpht 33180 finorwe 35480 lcfl7N 39442 renegeulem 40273 resubeqsub 40332 requad1 44962 requad2 44963 isringrng 45327 uzlidlring 45375 lubeldm2 46138 glbeldm2 46139 |
Copyright terms: Public domain | W3C validator |