Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reurex | Structured version Visualization version GIF version |
Description: Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.) |
Ref | Expression |
---|---|
reurex | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu5 3359 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3066 ∃!wreu 3067 ∃*wrmo 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-eu 2570 df-rex 3071 df-reu 3072 df-rmo 3073 |
This theorem is referenced by: 2reu2rex 3361 reu3 3665 reuxfr1d 3688 2rexreu 3700 sbcreu 3813 reu0 4297 2reu4 4462 tz6.26OLD 6248 weniso 7218 oawordex 8364 oaabs 8452 oaabs2 8453 supval2 9175 fisup2g 9188 fiinf2g 9220 nqerf 10670 qbtwnre 12915 modprm0 16487 issrgid 19740 isringid 19793 lspsneu 20366 frgpcyg 20762 qtophmeo 22949 pjthlem2 24583 dyadmax 24743 quotlem 25441 2sqreulem1 26575 2sqreunnlem1 26578 nfrgr2v 28615 2pthfrgrrn 28625 frgrncvvdeqlem9 28650 frgr2wwlkn0 28671 pjhthlem2 29733 cnlnadj 30420 2reu2rex1 30808 rmoxfrd 30820 cvmliftpht 33259 finorwe 35532 lcfl7N 39494 renegeulem 40332 resubeqsub 40391 requad1 45026 requad2 45027 isringrng 45391 uzlidlring 45439 lubeldm2 46202 glbeldm2 46203 |
Copyright terms: Public domain | W3C validator |