| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reurex | Structured version Visualization version GIF version | ||
| Description: Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.) |
| Ref | Expression |
|---|---|
| reurex | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3361 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wrex 3060 ∃!wreu 3357 ∃*wrmo 3358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2568 df-rex 3061 df-rmo 3359 df-reu 3360 |
| This theorem is referenced by: 2reu2rex 3373 reu3 3710 reuxfr1d 3733 2rexreu 3745 sbcreu 3851 reu0 4336 2reu4 4498 tz6.26OLD 6337 weniso 7347 oawordex 8569 oaabs 8660 oaabs2 8661 supval2 9467 fisup2g 9481 fiinf2g 9514 nqerf 10944 qbtwnre 13215 modprm0 16825 issrgid 20164 isringid 20231 isringrng 20247 lspsneu 21084 frgpcyg 21534 qtophmeo 23755 pjthlem2 25390 dyadmax 25551 quotlem 26260 2sqreulem1 27409 2sqreunnlem1 27412 nfrgr2v 30253 2pthfrgrrn 30263 frgrncvvdeqlem9 30288 frgr2wwlkn0 30309 pjhthlem2 31373 cnlnadj 32060 2reu2rex1 32462 rmoxfrd 32474 cvmliftpht 35340 finorwe 37400 lcfl7N 41520 renegeulem 42412 resubeqsub 42472 requad1 47636 requad2 47637 uzlidlring 48210 reuxfr1dd 48785 lubeldm2 48930 glbeldm2 48931 upciclem4 49104 |
| Copyright terms: Public domain | W3C validator |