![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-rmo | Structured version Visualization version GIF version |
Description: Define restricted
"at most one". Note: This notation is most often used
to express that 𝜑 holds for at most one element of a
given class
𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example,
asserted when 𝑥 and 𝐴 are disjoint.
Should instead 𝐴 depend on 𝑥, you rather assert at most one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3060). (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
df-rmo | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wrmo 3373 | . 2 wff ∃*𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1538 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2104 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 394 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | wmo 2530 | . 2 wff ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 4, 8 | wb 205 | 1 wff (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: reu5 3376 mormo 3379 rmobiia 3380 rmoanidOLD 3386 rmobidva 3389 rmo5 3394 cbvrmovw 3397 rmobida 3400 cbvrmow 3403 nfrmo1 3405 nfrmow 3407 rmoeq1 3412 rmoeq1OLD 3414 rmoeq1f 3418 nfrmowOLD 3421 nfrmod 3426 nfrmo 3428 rmov 3500 rmo4 3725 rmo3f 3729 rmoeq 3733 rmoan 3734 rmoim 3735 rmoimi2 3738 2reuswap 3741 2reu5lem2 3751 2rmoswap 3756 rmo2 3880 rmo3 3882 rmob 3883 rmob2 3885 rmoanim 3887 ssrmof 4048 dfdisj2 5114 rmorabex 5459 dffun9 6576 fncnv 6620 iunmapdisj 10020 brdom4 10527 enqeq 10931 2ndcdisj 23180 2ndcdisj2 23181 pjhtheu 30914 pjpreeq 30918 cnlnadjeui 31597 reuxfrdf 31998 rmoxfrd 32000 rmoun 32001 rmounid 32002 cbvdisjf 32069 funcnvmpt 32159 nrmo 35598 alrmomorn 37530 alrmomodm 37531 dfeldisj4 37893 disjres 37917 cdleme0moN 39399 onsucf1olem 42322 tfsconcatlem 42388 rmotru 47576 |
Copyright terms: Public domain | W3C validator |