Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-rmo | Structured version Visualization version GIF version |
Description: Define restricted
"at most one".
Note: This notation is most often used to express that 𝜑 holds for at most one element of a given class 𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example, asserted when 𝑥 and 𝐴 are disjoint. Should instead 𝐴 depend on 𝑥, you rather assert at most one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3075). (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
df-rmo | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wrmo 3073 | . 2 wff ∃*𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1537 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2111 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 399 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | wmo 2555 | . 2 wff ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 4, 8 | wb 209 | 1 wff (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: rmoanid 3252 nfrmo1 3289 nfrmod 3291 nfrmow 3293 nfrmo 3295 rmobida 3310 rmobiia 3313 rmoeq1f 3318 rmoeq1 3326 mormo 3339 reu5 3340 rmo5 3344 cbvrmow 3355 rmov 3438 rmo4 3644 rmo3f 3648 rmoeq 3652 rmoan 3653 rmoim 3654 rmoimi2 3657 2reuswap 3660 2reu5lem2 3670 2rmoswap 3675 rmo2 3793 rmo3 3795 rmob 3796 rmob2 3798 rmoanim 3800 ssrmof 3957 dfdisj2 4999 rmorabex 5320 dffun9 6364 fncnv 6408 iunmapdisj 9483 brdom4 9990 enqeq 10394 2ndcdisj 22156 2ndcdisj2 22157 pjhtheu 29276 pjpreeq 29280 cnlnadjeui 29959 reuxfrdf 30361 rmoxfrd 30363 rmoun 30364 rmounid 30365 cbvdisjf 30432 funcnvmpt 30528 nrmo 34148 alrmomorn 36052 alrmomodm 36053 dfeldisj4 36393 cdleme0moN 37801 |
Copyright terms: Public domain | W3C validator |