![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-rmo | Structured version Visualization version GIF version |
Description: Define restricted
"at most one". Note: This notation is most often used
to express that 𝜑 holds for at most one element of a
given class
𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example,
asserted when 𝑥 and 𝐴 are disjoint.
Should instead 𝐴 depend on 𝑥, you rather assert at most one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3059). (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
df-rmo | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wrmo 3376 | . 2 wff ∃*𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1535 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2105 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | wmo 2535 | . 2 wff ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 4, 8 | wb 206 | 1 wff (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: reu5 3379 mormo 3382 rmobiia 3383 rmoanidOLD 3389 rmobidva 3392 rmo5 3397 cbvrmovw 3400 rmobida 3403 cbvrmow 3406 nfrmo1 3408 nfrmow 3410 rmoeq1 3413 rmoeq1OLD 3415 rmoeq1f 3420 nfrmowOLD 3423 nfrmod 3428 nfrmo 3430 rmov 3508 rmo4 3738 rmo3f 3742 rmoeq 3746 rmoan 3747 rmoim 3748 rmoimi2 3751 2reuswap 3754 2reu5lem2 3764 2rmoswap 3769 rmo2 3895 rmo3 3897 rmob 3898 rmob2 3900 rmoanim 3902 ssrmof 4062 dfdisj2 5116 rmorabex 5470 dffun9 6596 fncnv 6640 iunmapdisj 10060 brdom4 10567 enqeq 10971 2ndcdisj 23479 2ndcdisj2 23480 pjhtheu 31422 pjpreeq 31426 cnlnadjeui 32105 reuxfrdf 32518 rmoxfrd 32520 rmoun 32521 rmounid 32522 cbvdisjf 32590 funcnvmpt 32683 rmoeqi 36168 rmoeqbii 36169 rmoeqbidv 36194 disjeq12dv 36197 cbvrmovw2 36210 cbvrmodavw 36234 cbvrmodavw2 36265 nrmo 36392 alrmomorn 38339 alrmomodm 38340 dfeldisj4 38701 disjres 38725 cdleme0moN 40207 onsucf1olem 43259 tfsconcatlem 43325 modelaxreplem2 44943 rmotru 48651 |
Copyright terms: Public domain | W3C validator |