Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-rmo | Structured version Visualization version GIF version |
Description: Define restricted
"at most one".
Note: This notation is most often used to express that 𝜑 holds for at most one element of a given class 𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example, asserted when 𝑥 and 𝐴 are disjoint. Should instead 𝐴 depend on 𝑥, you rather assert at most one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3069). (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
df-rmo | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wrmo 3067 | . 2 wff ∃*𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1538 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2106 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 396 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | wmo 2538 | . 2 wff ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 4, 8 | wb 205 | 1 wff (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: rmoanid 3299 nfrmo1 3301 nfrmod 3303 nfrmow 3304 nfrmowOLD 3307 nfrmo 3309 rmobida 3326 rmobidva 3327 rmobiia 3330 rmoeq1f 3335 rmoeq1 3345 mormo 3360 reu5 3361 rmo5 3365 cbvrmow 3375 cbvrmovw 3385 rmov 3459 rmo4 3665 rmo3f 3669 rmoeq 3673 rmoan 3674 rmoim 3675 rmoimi2 3678 2reuswap 3681 2reu5lem2 3691 2rmoswap 3696 rmo2 3820 rmo3 3822 rmob 3823 rmob2 3825 rmoanim 3827 ssrmof 3986 dfdisj2 5041 rmorabex 5375 dffun9 6463 fncnv 6507 iunmapdisj 9779 brdom4 10286 enqeq 10690 2ndcdisj 22607 2ndcdisj2 22608 pjhtheu 29756 pjpreeq 29760 cnlnadjeui 30439 reuxfrdf 30839 rmoxfrd 30841 rmoun 30842 rmounid 30843 cbvdisjf 30910 funcnvmpt 31004 nrmo 34599 alrmomorn 36490 alrmomodm 36491 dfeldisj4 36831 cdleme0moN 38239 rmotru 46150 |
Copyright terms: Public domain | W3C validator |