| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-rmo | Structured version Visualization version GIF version | ||
| Description: Define restricted
"at most one". Note: This notation is most often used
to express that 𝜑 holds for at most one element of a
given class
𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example,
asserted when 𝑥 and 𝐴 are disjoint.
Should instead 𝐴 depend on 𝑥, you rather assert at most one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3048). (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| df-rmo | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | wrmo 3345 | . 2 wff ∃*𝑥 ∈ 𝐴 𝜑 |
| 5 | 2 | cv 1540 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2111 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | wmo 2533 | . 2 wff ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 9 | 4, 8 | wb 206 | 1 wff (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: reu5 3348 mormo 3351 rmobiia 3352 rmobidva 3359 rmo5 3364 cbvrmovw 3367 rmobida 3369 cbvrmow 3371 nfrmo1 3373 nfrmow 3375 rmoeq1 3377 rmoeq1OLD 3379 rmoeq1f 3385 nfrmod 3391 nfrmo 3393 rmov 3466 rmo4 3684 rmo3f 3688 rmoeq 3692 rmoan 3693 rmoim 3694 rmoimi2 3697 2reuswap 3700 2reu5lem2 3710 2rmoswap 3715 rmo2 3833 rmo3 3835 rmob 3836 rmob2 3838 rmoanim 3840 ssrmof 3997 dfdisj2 5058 rmorabex 5398 dffun9 6510 fncnv 6554 iunmapdisj 9914 brdom4 10421 enqeq 10825 2ndcdisj 23371 2ndcdisj2 23372 pjhtheu 31374 pjpreeq 31378 cnlnadjeui 32057 reuxfrdf 32470 rmoxfrd 32472 rmoun 32473 rmounid 32474 cbvdisjf 32551 funcnvmpt 32649 rmoeqi 36231 rmoeqbii 36232 rmoeqbidv 36257 disjeq12dv 36259 cbvrmovw2 36272 cbvrmodavw 36296 cbvrmodavw2 36327 nrmo 36454 alrmomorn 38400 alrmomodm 38401 dfeldisj4 38828 disjres 38852 cdleme0moN 40334 onsucf1olem 43373 tfsconcatlem 43439 modelaxreplem2 45082 rmotru 48913 |
| Copyright terms: Public domain | W3C validator |