| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-rmo | Structured version Visualization version GIF version | ||
| Description: Define restricted
"at most one". Note: This notation is most often used
to express that 𝜑 holds for at most one element of a
given class
𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example,
asserted when 𝑥 and 𝐴 are disjoint.
Should instead 𝐴 depend on 𝑥, you rather assert at most one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3052). (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| df-rmo | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | wrmo 3358 | . 2 wff ∃*𝑥 ∈ 𝐴 𝜑 |
| 5 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2108 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | wmo 2537 | . 2 wff ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 9 | 4, 8 | wb 206 | 1 wff (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: reu5 3361 mormo 3364 rmobiia 3365 rmoanidOLD 3371 rmobidva 3374 rmo5 3379 cbvrmovw 3382 rmobida 3385 cbvrmow 3388 nfrmo1 3390 nfrmow 3392 rmoeq1 3395 rmoeq1OLD 3397 rmoeq1f 3403 nfrmowOLD 3406 nfrmod 3411 nfrmo 3413 rmov 3490 rmo4 3713 rmo3f 3717 rmoeq 3721 rmoan 3722 rmoim 3723 rmoimi2 3726 2reuswap 3729 2reu5lem2 3739 2rmoswap 3744 rmo2 3862 rmo3 3864 rmob 3865 rmob2 3867 rmoanim 3869 ssrmof 4026 dfdisj2 5088 rmorabex 5435 dffun9 6564 fncnv 6608 iunmapdisj 10035 brdom4 10542 enqeq 10946 2ndcdisj 23392 2ndcdisj2 23393 pjhtheu 31321 pjpreeq 31325 cnlnadjeui 32004 reuxfrdf 32418 rmoxfrd 32420 rmoun 32421 rmounid 32422 cbvdisjf 32498 funcnvmpt 32591 rmoeqi 36151 rmoeqbii 36152 rmoeqbidv 36177 disjeq12dv 36179 cbvrmovw2 36192 cbvrmodavw 36216 cbvrmodavw2 36247 nrmo 36374 alrmomorn 38322 alrmomodm 38323 dfeldisj4 38684 disjres 38708 cdleme0moN 40190 onsucf1olem 43241 tfsconcatlem 43307 modelaxreplem2 44952 rmotru 48730 |
| Copyright terms: Public domain | W3C validator |