| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-rmo | Structured version Visualization version GIF version | ||
| Description: Define restricted
"at most one". Note: This notation is most often used
to express that 𝜑 holds for at most one element of a
given class
𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example,
asserted when 𝑥 and 𝐴 are disjoint.
Should instead 𝐴 depend on 𝑥, you rather assert at most one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3045). (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| df-rmo | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | wrmo 3342 | . 2 wff ∃*𝑥 ∈ 𝐴 𝜑 |
| 5 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | wmo 2531 | . 2 wff ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 9 | 4, 8 | wb 206 | 1 wff (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: reu5 3345 mormo 3348 rmobiia 3349 rmoanidOLD 3355 rmobidva 3358 rmo5 3363 cbvrmovw 3366 rmobida 3368 cbvrmow 3370 nfrmo1 3372 nfrmow 3374 rmoeq1 3376 rmoeq1OLD 3378 rmoeq1f 3384 nfrmod 3390 nfrmo 3392 rmov 3466 rmo4 3690 rmo3f 3694 rmoeq 3698 rmoan 3699 rmoim 3700 rmoimi2 3703 2reuswap 3706 2reu5lem2 3716 2rmoswap 3721 rmo2 3839 rmo3 3841 rmob 3842 rmob2 3844 rmoanim 3846 ssrmof 4003 dfdisj2 5061 rmorabex 5403 dffun9 6511 fncnv 6555 iunmapdisj 9917 brdom4 10424 enqeq 10828 2ndcdisj 23341 2ndcdisj2 23342 pjhtheu 31338 pjpreeq 31342 cnlnadjeui 32021 reuxfrdf 32435 rmoxfrd 32437 rmoun 32438 rmounid 32439 cbvdisjf 32515 funcnvmpt 32611 rmoeqi 36171 rmoeqbii 36172 rmoeqbidv 36197 disjeq12dv 36199 cbvrmovw2 36212 cbvrmodavw 36236 cbvrmodavw2 36267 nrmo 36394 alrmomorn 38336 alrmomodm 38337 dfeldisj4 38708 disjres 38732 cdleme0moN 40214 onsucf1olem 43253 tfsconcatlem 43319 modelaxreplem2 44963 rmotru 48797 |
| Copyright terms: Public domain | W3C validator |