![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-rmo | Structured version Visualization version GIF version |
Description: Define restricted
"at most one". Note: This notation is most often used
to express that 𝜑 holds for at most one element of a
given class
𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example,
asserted when 𝑥 and 𝐴 are disjoint.
Should instead 𝐴 depend on 𝑥, you rather assert at most one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3068). (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
df-rmo | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wrmo 3387 | . 2 wff ∃*𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1536 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2108 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | wmo 2541 | . 2 wff ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 4, 8 | wb 206 | 1 wff (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: reu5 3390 mormo 3393 rmobiia 3394 rmoanidOLD 3400 rmobidva 3403 rmo5 3408 cbvrmovw 3411 rmobida 3414 cbvrmow 3417 nfrmo1 3419 nfrmow 3421 rmoeq1 3425 rmoeq1OLD 3427 rmoeq1f 3431 nfrmowOLD 3434 nfrmod 3439 nfrmo 3441 rmov 3519 rmo4 3752 rmo3f 3756 rmoeq 3760 rmoan 3761 rmoim 3762 rmoimi2 3765 2reuswap 3768 2reu5lem2 3778 2rmoswap 3783 rmo2 3909 rmo3 3911 rmob 3912 rmob2 3914 rmoanim 3916 ssrmof 4076 dfdisj2 5135 rmorabex 5480 dffun9 6607 fncnv 6651 iunmapdisj 10092 brdom4 10599 enqeq 11003 2ndcdisj 23485 2ndcdisj2 23486 pjhtheu 31426 pjpreeq 31430 cnlnadjeui 32109 reuxfrdf 32519 rmoxfrd 32521 rmoun 32522 rmounid 32523 cbvdisjf 32593 funcnvmpt 32685 rmoeqi 36151 rmoeqbii 36152 rmoeqbidv 36177 disjeq12dv 36181 cbvrmovw2 36194 cbvrmodavw 36218 cbvrmodavw2 36249 nrmo 36376 alrmomorn 38314 alrmomodm 38315 dfeldisj4 38676 disjres 38700 cdleme0moN 40182 onsucf1olem 43232 tfsconcatlem 43298 rmotru 48536 |
Copyright terms: Public domain | W3C validator |