Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-rmo | Structured version Visualization version GIF version |
Description: Define restricted
"at most one".
Note: This notation is most often used to express that 𝜑 holds for at most one element of a given class 𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example, asserted when 𝑥 and 𝐴 are disjoint. Should instead 𝐴 depend on 𝑥, you rather assert at most one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3069). (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
df-rmo | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wrmo 3067 | . 2 wff ∃*𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1542 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2112 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 399 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | wmo 2539 | . 2 wff ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 4, 8 | wb 209 | 1 wff (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: rmoanid 3259 nfrmo1 3298 nfrmod 3300 nfrmow 3302 nfrmo 3304 rmobida 3319 rmobiia 3322 rmoeq1f 3327 rmoeq1 3337 mormo 3351 reu5 3352 rmo5 3356 cbvrmow 3367 cbvrmovw 3375 rmov 3450 rmo4 3661 rmo3f 3665 rmoeq 3669 rmoan 3670 rmoim 3671 rmoimi2 3674 2reuswap 3677 2reu5lem2 3687 2rmoswap 3692 rmo2 3817 rmo3 3819 rmob 3820 rmob2 3822 rmoanim 3824 ssrmof 3983 dfdisj2 5037 rmorabex 5368 dffun9 6444 fncnv 6488 iunmapdisj 9685 brdom4 10192 enqeq 10596 2ndcdisj 22490 2ndcdisj2 22491 pjhtheu 29632 pjpreeq 29636 cnlnadjeui 30315 reuxfrdf 30715 rmoxfrd 30717 rmoun 30718 rmounid 30719 cbvdisjf 30786 funcnvmpt 30881 nrmo 34501 alrmomorn 36396 alrmomodm 36397 dfeldisj4 36737 cdleme0moN 38145 rmotru 46011 |
Copyright terms: Public domain | W3C validator |