![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-rmo | Structured version Visualization version GIF version |
Description: Define restricted
"at most one". Note: This notation is most often used
to express that 𝜑 holds for at most one element of a
given class
𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example,
asserted when 𝑥 and 𝐴 are disjoint.
Should instead 𝐴 depend on 𝑥, you rather assert at most one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3063). (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
df-rmo | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wrmo 3376 | . 2 wff ∃*𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1541 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2107 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 397 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | wmo 2533 | . 2 wff ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 4, 8 | wb 205 | 1 wff (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: reu5 3379 mormo 3382 rmobiia 3383 rmoanidOLD 3389 rmobidva 3392 rmo5 3397 cbvrmovw 3400 rmobida 3403 cbvrmow 3406 nfrmo1 3408 nfrmow 3410 rmoeq1 3415 rmoeq1OLD 3417 rmoeq1f 3421 nfrmowOLD 3424 nfrmod 3429 nfrmo 3431 rmov 3502 rmo4 3727 rmo3f 3731 rmoeq 3735 rmoan 3736 rmoim 3737 rmoimi2 3740 2reuswap 3743 2reu5lem2 3753 2rmoswap 3758 rmo2 3882 rmo3 3884 rmob 3885 rmob2 3887 rmoanim 3889 ssrmof 4050 dfdisj2 5116 rmorabex 5461 dffun9 6578 fncnv 6622 iunmapdisj 10018 brdom4 10525 enqeq 10929 2ndcdisj 22960 2ndcdisj2 22961 pjhtheu 30647 pjpreeq 30651 cnlnadjeui 31330 reuxfrdf 31731 rmoxfrd 31733 rmoun 31734 rmounid 31735 cbvdisjf 31802 funcnvmpt 31892 nrmo 35295 alrmomorn 37227 alrmomodm 37228 dfeldisj4 37590 disjres 37614 cdleme0moN 39096 onsucf1olem 42020 tfsconcatlem 42086 rmotru 47489 |
Copyright terms: Public domain | W3C validator |