| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-rmo | Structured version Visualization version GIF version | ||
| Description: Define restricted
"at most one". Note: This notation is most often used
to express that 𝜑 holds for at most one element of a
given class
𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example,
asserted when 𝑥 and 𝐴 are disjoint.
Should instead 𝐴 depend on 𝑥, you rather assert at most one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3045). (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| df-rmo | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | wrmo 3353 | . 2 wff ∃*𝑥 ∈ 𝐴 𝜑 |
| 5 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | wmo 2531 | . 2 wff ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 9 | 4, 8 | wb 206 | 1 wff (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: reu5 3356 mormo 3359 rmobiia 3360 rmoanidOLD 3366 rmobidva 3369 rmo5 3374 cbvrmovw 3377 rmobida 3379 cbvrmow 3381 nfrmo1 3383 nfrmow 3385 rmoeq1 3387 rmoeq1OLD 3389 rmoeq1f 3395 nfrmod 3401 nfrmo 3403 rmov 3477 rmo4 3701 rmo3f 3705 rmoeq 3709 rmoan 3710 rmoim 3711 rmoimi2 3714 2reuswap 3717 2reu5lem2 3727 2rmoswap 3732 rmo2 3850 rmo3 3852 rmob 3853 rmob2 3855 rmoanim 3857 ssrmof 4014 dfdisj2 5076 rmorabex 5420 dffun9 6545 fncnv 6589 iunmapdisj 9976 brdom4 10483 enqeq 10887 2ndcdisj 23343 2ndcdisj2 23344 pjhtheu 31323 pjpreeq 31327 cnlnadjeui 32006 reuxfrdf 32420 rmoxfrd 32422 rmoun 32423 rmounid 32424 cbvdisjf 32500 funcnvmpt 32591 rmoeqi 36175 rmoeqbii 36176 rmoeqbidv 36201 disjeq12dv 36203 cbvrmovw2 36216 cbvrmodavw 36240 cbvrmodavw2 36271 nrmo 36398 alrmomorn 38340 alrmomodm 38341 dfeldisj4 38712 disjres 38736 cdleme0moN 40219 onsucf1olem 43259 tfsconcatlem 43325 modelaxreplem2 44969 rmotru 48788 |
| Copyright terms: Public domain | W3C validator |