| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-rmo | Structured version Visualization version GIF version | ||
| Description: Define restricted
"at most one". Note: This notation is most often used
to express that 𝜑 holds for at most one element of a
given class
𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example,
asserted when 𝑥 and 𝐴 are disjoint.
Should instead 𝐴 depend on 𝑥, you rather assert at most one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3045). (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| df-rmo | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | wrmo 3350 | . 2 wff ∃*𝑥 ∈ 𝐴 𝜑 |
| 5 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 395 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | wmo 2531 | . 2 wff ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 9 | 4, 8 | wb 206 | 1 wff (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: reu5 3353 mormo 3356 rmobiia 3357 rmoanidOLD 3363 rmobidva 3366 rmo5 3371 cbvrmovw 3374 rmobida 3376 cbvrmow 3378 nfrmo1 3380 nfrmow 3382 rmoeq1 3384 rmoeq1OLD 3386 rmoeq1f 3392 nfrmod 3398 nfrmo 3400 rmov 3474 rmo4 3698 rmo3f 3702 rmoeq 3706 rmoan 3707 rmoim 3708 rmoimi2 3711 2reuswap 3714 2reu5lem2 3724 2rmoswap 3729 rmo2 3847 rmo3 3849 rmob 3850 rmob2 3852 rmoanim 3854 ssrmof 4011 dfdisj2 5071 rmorabex 5415 dffun9 6529 fncnv 6573 iunmapdisj 9952 brdom4 10459 enqeq 10863 2ndcdisj 23319 2ndcdisj2 23320 pjhtheu 31296 pjpreeq 31300 cnlnadjeui 31979 reuxfrdf 32393 rmoxfrd 32395 rmoun 32396 rmounid 32397 cbvdisjf 32473 funcnvmpt 32564 rmoeqi 36148 rmoeqbii 36149 rmoeqbidv 36174 disjeq12dv 36176 cbvrmovw2 36189 cbvrmodavw 36213 cbvrmodavw2 36244 nrmo 36371 alrmomorn 38313 alrmomodm 38314 dfeldisj4 38685 disjres 38709 cdleme0moN 40192 onsucf1olem 43232 tfsconcatlem 43298 modelaxreplem2 44942 rmotru 48764 |
| Copyright terms: Public domain | W3C validator |