Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-reu | Structured version Visualization version GIF version |
Description: Define restricted
existential uniqueness.
Note: This notation is most often used to express that 𝜑 holds for exactly one element of a given class 𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example, asserted when 𝑥 and 𝐴 are disjoint. Should instead 𝐴 depend on 𝑥, you rather assert exactly one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3069). (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
df-reu | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wreu 3066 | . 2 wff ∃!𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1538 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2106 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 396 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | weu 2568 | . 2 wff ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 4, 8 | wb 205 | 1 wff (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: reuanid 3298 nfreu1 3300 nfreud 3302 nfreuw 3305 nfreuwOLD 3306 reubida 3321 reubidva 3322 reubiia 3324 reueq1f 3334 reueq1 3344 reu5 3361 rmo5 3365 reueubd 3367 cbvreuwOLD 3377 cbvreu 3381 cbvreuvw 3386 reuv 3458 reu2 3660 reu6 3661 reu3 3662 2reuswap 3681 2reuswap2 3682 2reu5lem1 3690 cbvreucsf 3879 reuun2 4248 reuss2 4249 reupick 4252 reupick3 4253 euelss 4255 reusn 4663 rabsneu 4665 reusv2lem4 5324 reusv2lem5 5325 reuhypd 5342 funcnv3 6504 feu 6650 dff4 6977 f1ompt 6985 fsn 7007 riotauni 7238 riotacl2 7249 riota1 7254 riota1a 7255 riota2df 7256 snriota 7266 riotaund 7272 aceq1 9873 dfac2b 9886 nqerf 10686 zmin 12684 climreu 15265 divalglem10 16111 divalgb 16113 uptx 22776 txcn 22777 q1peqb 25319 axcontlem2 27333 edgnbusgreu 27734 nbusgredgeu0 27735 frgr3vlem2 28638 3vfriswmgrlem 28641 frgrncvvdeqlem2 28664 adjeu 30251 reuxfrdf 30839 rmoxfrd 30841 reurab 33674 neibastop3 34551 cbvreud 35544 poimirlem25 35802 poimirlem27 35804 fsuppind 40279 pairreueq 44962 prprsprreu 44971 prprreueq 44972 reutru 46151 |
Copyright terms: Public domain | W3C validator |