Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-reu | Structured version Visualization version GIF version |
Description: Define restricted
existential uniqueness.
Note: This notation is most often used to express that 𝜑 holds for exactly one element of a given class 𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example, asserted when 𝑥 and 𝐴 are disjoint. Should instead 𝐴 depend on 𝑥, you rather assert exactly one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3071). (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
df-reu | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wreu 3068 | . 2 wff ∃!𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1541 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2110 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 396 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | weu 2570 | . 2 wff ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 4, 8 | wb 205 | 1 wff (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: reuanid 3259 nfreu1 3299 nfreud 3301 nfreuw 3304 nfreuwOLD 3305 reubida 3320 reubidva 3321 reubiia 3323 reueq1f 3333 reueq1 3343 reu5 3360 rmo5 3364 reueubd 3366 cbvreuw 3374 cbvreu 3379 cbvreuvw 3384 reuv 3457 reu2 3664 reu6 3665 reu3 3666 2reuswap 3685 2reuswap2 3686 2reu5lem1 3694 cbvreucsf 3884 reuun2 4254 reuss2 4255 reupick 4258 reupick3 4259 euelss 4261 reusn 4669 rabsneu 4671 reusv2lem4 5328 reusv2lem5 5329 reuhypd 5346 funcnv3 6501 feu 6647 dff4 6972 f1ompt 6980 fsn 7002 riotauni 7232 riotacl2 7243 riota1 7248 riota1a 7249 riota2df 7250 snriota 7260 riotaund 7266 aceq1 9872 dfac2b 9885 nqerf 10685 zmin 12681 climreu 15261 divalglem10 16107 divalgb 16109 uptx 22772 txcn 22773 q1peqb 25315 axcontlem2 27329 edgnbusgreu 27730 nbusgredgeu0 27731 frgr3vlem2 28632 3vfriswmgrlem 28635 frgrncvvdeqlem2 28658 adjeu 30245 reuxfrdf 30833 rmoxfrd 30835 reurab 33668 neibastop3 34545 cbvreud 35538 poimirlem25 35796 poimirlem27 35798 fsuppind 40274 pairreueq 44929 prprsprreu 44938 prprreueq 44939 reutru 46118 |
Copyright terms: Public domain | W3C validator |