Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-reu | Structured version Visualization version GIF version |
Description: Define restricted
existential uniqueness.
Note: This notation is most often used to express that 𝜑 holds for exactly one element of a given class 𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example, asserted when 𝑥 and 𝐴 are disjoint. Should instead 𝐴 depend on 𝑥, you rather assert exactly one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3069). (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
df-reu | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wreu 3066 | . 2 wff ∃!𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1542 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2112 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 399 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | weu 2569 | . 2 wff ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 4, 8 | wb 209 | 1 wff (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: reuanid 3258 nfreu1 3297 nfreud 3299 nfreuw 3301 reubida 3314 reubidva 3315 reubiia 3317 reueq1f 3326 reueq1 3336 reu5 3352 rmo5 3356 reueubd 3358 cbvreuw 3366 cbvreu 3371 cbvreuvw 3376 reuv 3449 reu2 3656 reu6 3657 reu3 3658 2reuswap 3677 2reuswap2 3678 2reu5lem1 3686 cbvreucsf 3876 reuun2 4246 reuss2 4247 reupick 4250 reupick3 4251 euelss 4253 reusn 4660 rabsneu 4662 reusv2lem4 5318 reusv2lem5 5319 reuhypd 5336 funcnv3 6485 feu 6631 dff4 6956 f1ompt 6964 fsn 6986 riotauni 7215 riotacl2 7226 riota1 7231 riota1a 7232 riota2df 7233 snriota 7243 riotaund 7249 aceq1 9779 dfac2b 9792 nqerf 10592 zmin 12588 climreu 15168 divalglem10 16014 divalgb 16016 uptx 22659 txcn 22660 q1peqb 25199 axcontlem2 27211 edgnbusgreu 27612 nbusgredgeu0 27613 frgr3vlem2 28514 3vfriswmgrlem 28517 frgrncvvdeqlem2 28540 adjeu 30127 reuxfrdf 30715 rmoxfrd 30717 reurab 33551 neibastop3 34453 cbvreud 35450 poimirlem25 35708 poimirlem27 35710 fsuppind 40174 pairreueq 44823 prprsprreu 44832 prprreueq 44833 reutru 46012 |
Copyright terms: Public domain | W3C validator |