![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-eu | Structured version Visualization version GIF version |
Description: Define the existential
uniqueness quantifier. This expresses unique
existence, or existential uniqueness, which is the conjunction of
existence (df-ex 1775) and uniqueness (df-mo 2536). The expression
∃!𝑥𝜑 is read "there exists exactly
one 𝑥 such that 𝜑 " or
"there exists a unique 𝑥 such that 𝜑". This is also
called the
"uniqueness quantifier" but that expression is also used for the
at-most-one quantifier df-mo 2536, therefore we avoid that ambiguous name.
Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2606, eu2 2605, eu3v 2566, and eu6 2570. As for double unique existence, beware that the expression ∃!𝑥∃!𝑦𝜑 means "there exists a unique 𝑥 such that there exists a unique 𝑦 such that 𝜑 " which is a weaker property than "there exists exactly one 𝑥 and one 𝑦 such that 𝜑 " (see 2eu4 2651). (Contributed by NM, 12-Aug-1993.) Make this the definition (which used to be eu6 2570, while this definition was then proved as dfeu 2591). (Revised by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
df-eu | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | weu 2564 | . 2 wff ∃!𝑥𝜑 |
4 | 1, 2 | wex 1774 | . . 3 wff ∃𝑥𝜑 |
5 | 1, 2 | wmo 2534 | . . 3 wff ∃*𝑥𝜑 |
6 | 4, 5 | wa 395 | . 2 wff (∃𝑥𝜑 ∧ ∃*𝑥𝜑) |
7 | 3, 6 | wb 206 | 1 wff (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: eu3v 2566 euex 2573 eumo 2574 exmoeub 2576 moeuex 2578 eubi 2580 eubii 2581 nfeu1ALT 2585 nfeud2 2586 nfeudw 2587 cbveuvw 2601 cbveuw 2602 cbveuALT 2604 eu2 2605 eu4 2611 2euswapv 2626 2euexv 2627 2exeuv 2628 2euex 2637 2euswap 2641 2exeu 2642 2eu4 2651 reu5 3378 eueq 3717 reuss2 4332 n0moeu 4365 reusv2lem1 5399 funcnv3 6633 fnres 6691 mptfnf 6699 fnopabg 6701 brprcneu 6891 brprcneuALT 6892 dff3 7114 finnisoeu 10144 dfac2b 10162 recmulnq 10995 uptx 23630 hausflf2 24003 nosupno 27744 nosupfv 27747 noinfno 27759 noinffv 27762 adjeu 31899 bnj151 34831 bnj600 34873 cbveudavw 36194 bj-eu3f 36784 wl-euae 37458 onsucf1olem 43218 eu0 43468 fzisoeu 45201 ellimciota 45520 euabsneu 46928 iota0ndef 46939 aiota0ndef 46997 reutruALT 48575 mo0sn 48585 thincn0eu 48753 |
Copyright terms: Public domain | W3C validator |