Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-eu | Structured version Visualization version GIF version |
Description: Define the existential
uniqueness quantifier. This expresses unique
existence, or existential uniqueness, which is the conjunction of
existence (df-ex 1784) and uniqueness (df-mo 2540). The expression
∃!𝑥𝜑 is read "there exists exactly
one 𝑥 such that 𝜑 " or
"there exists a unique 𝑥 such that 𝜑". This is also
called the
"uniqueness quantifier" but that expression is also used for the
at-most-one quantifier df-mo 2540, therefore we avoid that ambiguous name.
Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2612, eu2 2611, eu3v 2570, and eu6 2574. As for double unique existence, beware that the expression ∃!𝑥∃!𝑦𝜑 means "there exists a unique 𝑥 such that there exists a unique 𝑦 such that 𝜑 " which is a weaker property than "there exists exactly one 𝑥 and one 𝑦 such that 𝜑 " (see 2eu4 2656). (Contributed by NM, 12-Aug-1993.) Make this the definition (which used to be eu6 2574, while this definition was then proved as dfeu 2595). (Revised by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
df-eu | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | weu 2568 | . 2 wff ∃!𝑥𝜑 |
4 | 1, 2 | wex 1783 | . . 3 wff ∃𝑥𝜑 |
5 | 1, 2 | wmo 2538 | . . 3 wff ∃*𝑥𝜑 |
6 | 4, 5 | wa 395 | . 2 wff (∃𝑥𝜑 ∧ ∃*𝑥𝜑) |
7 | 3, 6 | wb 205 | 1 wff (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: eu3v 2570 euex 2577 eumo 2578 exmoeub 2580 moeuex 2582 eubi 2584 eubii 2585 nfeu1ALT 2589 nfeud2 2590 nfeudw 2591 cbveuvw 2606 cbveuw 2607 cbveuALT 2610 eu2 2611 eu4 2617 2euswapv 2632 2euexv 2633 2exeuv 2634 2euex 2643 2euswap 2647 2exeu 2648 2eu4 2656 reu5 3351 eueq 3638 reuss2 4246 n0moeu 4287 reusv2lem1 5316 funcnv3 6488 fnres 6543 mptfnf 6552 fnopabg 6554 brprcneu 6747 fvprc 6748 dff3 6958 finnisoeu 9800 dfac2b 9817 recmulnq 10651 uptx 22684 hausflf2 23057 adjeu 30152 bnj151 32757 bnj600 32799 nosupno 33833 nosupfv 33836 noinfno 33848 noinffv 33851 bj-eu3f 34952 wl-euae 35603 eu0 41025 fzisoeu 42729 ellimciota 43045 euabsneu 44409 iota0ndef 44420 aiota0ndef 44476 reutruALT 46040 mo0sn 46049 thincn0eu 46201 |
Copyright terms: Public domain | W3C validator |