| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-eu | Structured version Visualization version GIF version | ||
| Description: Define the existential
uniqueness quantifier. This expresses unique
existence, or existential uniqueness, which is the conjunction of
existence (df-ex 1780) and uniqueness (df-mo 2533). The expression
∃!𝑥𝜑 is read "there exists exactly
one 𝑥 such that 𝜑 " or
"there exists a unique 𝑥 such that 𝜑". This is also
called the
"uniqueness quantifier" but that expression is also used for the
at-most-one quantifier df-mo 2533, therefore we avoid that ambiguous name.
Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2603, eu2 2602, eu3v 2563, and eu6 2567. As for double unique existence, beware that the expression ∃!𝑥∃!𝑦𝜑 means "there exists a unique 𝑥 such that there exists a unique 𝑦 such that 𝜑 " which is a weaker property than "there exists exactly one 𝑥 and one 𝑦 such that 𝜑 " (see 2eu4 2648). (Contributed by NM, 12-Aug-1993.) Make this the definition (which used to be eu6 2567, while this definition was then proved as dfeu 2588). (Revised by BJ, 30-Sep-2022.) |
| Ref | Expression |
|---|---|
| df-eu | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | weu 2561 | . 2 wff ∃!𝑥𝜑 |
| 4 | 1, 2 | wex 1779 | . . 3 wff ∃𝑥𝜑 |
| 5 | 1, 2 | wmo 2531 | . . 3 wff ∃*𝑥𝜑 |
| 6 | 4, 5 | wa 395 | . 2 wff (∃𝑥𝜑 ∧ ∃*𝑥𝜑) |
| 7 | 3, 6 | wb 206 | 1 wff (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: eu3v 2563 euex 2570 eumo 2571 exmoeub 2573 moeuex 2575 eubi 2577 eubii 2578 nfeu1ALT 2582 nfeud2 2583 nfeudw 2584 cbveuvw 2598 cbveuw 2599 cbveuALT 2601 eu2 2602 eu4 2608 2euswapv 2623 2euexv 2624 2exeuv 2625 2euex 2634 2euswap 2638 2exeu 2639 2eu4 2648 reu5 3347 eueq 3670 reuss2 4279 n0moeu 4312 reusv2lem1 5340 funcnv3 6556 fnres 6613 mptfnf 6621 fnopabg 6623 brprcneu 6816 brprcneuALT 6817 dff3 7038 finnisoeu 10026 dfac2b 10044 recmulnq 10877 uptx 23528 hausflf2 23901 nosupno 27631 nosupfv 27634 noinfno 27646 noinffv 27649 adjeu 31851 bnj151 34843 bnj600 34885 cbveudavw 36224 bj-eu3f 36814 wl-euae 37490 onsucf1olem 43243 eu0 43493 fzisoeu 45282 ellimciota 45596 euabsneu 47013 iota0ndef 47024 aiota0ndef 47082 reutruALT 48777 mo0sn 48788 thincn0eu 49404 eufunc 49495 arweutermc 49503 |
| Copyright terms: Public domain | W3C validator |