| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-eu | Structured version Visualization version GIF version | ||
| Description: Define the existential
uniqueness quantifier. This expresses unique
existence, or existential uniqueness, which is the conjunction of
existence (df-ex 1781) and uniqueness (df-mo 2535). The expression
∃!𝑥𝜑 is read "there exists exactly
one 𝑥 such that 𝜑 " or
"there exists a unique 𝑥 such that 𝜑". This is also
called the
"uniqueness quantifier" but that expression is also used for the
at-most-one quantifier df-mo 2535, therefore we avoid that ambiguous name.
Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2605, eu2 2604, eu3v 2565, and eu6 2569. As for double unique existence, beware that the expression ∃!𝑥∃!𝑦𝜑 means "there exists a unique 𝑥 such that there exists a unique 𝑦 such that 𝜑 " which is a weaker property than "there exists exactly one 𝑥 and one 𝑦 such that 𝜑 " (see 2eu4 2650). (Contributed by NM, 12-Aug-1993.) Make this the definition (which used to be eu6 2569, while this definition was then proved as dfeu 2590). (Revised by BJ, 30-Sep-2022.) |
| Ref | Expression |
|---|---|
| df-eu | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | weu 2563 | . 2 wff ∃!𝑥𝜑 |
| 4 | 1, 2 | wex 1780 | . . 3 wff ∃𝑥𝜑 |
| 5 | 1, 2 | wmo 2533 | . . 3 wff ∃*𝑥𝜑 |
| 6 | 4, 5 | wa 395 | . 2 wff (∃𝑥𝜑 ∧ ∃*𝑥𝜑) |
| 7 | 3, 6 | wb 206 | 1 wff (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: eu3v 2565 euex 2572 eumo 2573 exmoeub 2575 moeuex 2577 eubi 2579 eubii 2580 nfeu1ALT 2584 nfeud2 2585 nfeudw 2586 cbveuvw 2600 cbveuw 2601 cbveuALT 2603 eu2 2604 eu4 2610 2euswapv 2625 2euexv 2626 2exeuv 2627 2euex 2636 2euswap 2640 2exeu 2641 2eu4 2650 reu5 3348 eueq 3662 reuss2 4275 n0moeu 4308 reusv2lem1 5338 funcnv3 6557 fnres 6614 mptfnf 6622 fnopabg 6624 brprcneu 6818 brprcneuALT 6819 dff3 7039 finnisoeu 10010 dfac2b 10028 recmulnq 10861 uptx 23546 hausflf2 23919 nosupno 27648 nosupfv 27651 noinfno 27663 noinffv 27666 adjeu 31876 bnj151 34896 bnj600 34938 cbveudavw 36302 bj-eu3f 36892 wl-euae 37568 onsucf1olem 43368 eu0 43618 fzisoeu 45406 ellimciota 45719 euabsneu 47133 iota0ndef 47144 aiota0ndef 47202 reutruALT 48910 mo0sn 48921 thincn0eu 49537 eufunc 49628 arweutermc 49636 |
| Copyright terms: Public domain | W3C validator |