Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-eu | Structured version Visualization version GIF version |
Description: Define the existential
uniqueness quantifier. This expresses unique
existence, or existential uniqueness, which is the conjunction of
existence (df-ex 1783) and uniqueness (df-mo 2541). The expression
∃!𝑥𝜑 is read "there exists exactly
one 𝑥 such that 𝜑 " or
"there exists a unique 𝑥 such that 𝜑". This is also
called the
"uniqueness quantifier" but that expression is also used for the
at-most-one quantifier df-mo 2541, therefore we avoid that ambiguous name.
Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2613, eu2 2612, eu3v 2571, and eu6 2575. As for double unique existence, beware that the expression ∃!𝑥∃!𝑦𝜑 means "there exists a unique 𝑥 such that there exists a unique 𝑦 such that 𝜑 " which is a weaker property than "there exists exactly one 𝑥 and one 𝑦 such that 𝜑 " (see 2eu4 2657). (Contributed by NM, 12-Aug-1993.) Make this the definition (which used to be eu6 2575, while this definition was then proved as dfeu 2596). (Revised by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
df-eu | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | weu 2569 | . 2 wff ∃!𝑥𝜑 |
4 | 1, 2 | wex 1782 | . . 3 wff ∃𝑥𝜑 |
5 | 1, 2 | wmo 2539 | . . 3 wff ∃*𝑥𝜑 |
6 | 4, 5 | wa 396 | . 2 wff (∃𝑥𝜑 ∧ ∃*𝑥𝜑) |
7 | 3, 6 | wb 205 | 1 wff (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: eu3v 2571 euex 2578 eumo 2579 exmoeub 2581 moeuex 2583 eubi 2585 eubii 2586 nfeu1ALT 2590 nfeud2 2591 nfeudw 2592 cbveuvw 2607 cbveuw 2608 cbveuALT 2611 eu2 2612 eu4 2618 2euswapv 2633 2euexv 2634 2exeuv 2635 2euex 2644 2euswap 2648 2exeu 2649 2eu4 2657 reu5 3362 eueq 3644 reuss2 4250 n0moeu 4291 reusv2lem1 5322 funcnv3 6511 fnres 6568 mptfnf 6577 fnopabg 6579 brprcneu 6773 brprcneuALT 6774 dff3 6985 finnisoeu 9878 dfac2b 9895 recmulnq 10729 uptx 22785 hausflf2 23158 adjeu 30260 bnj151 32866 bnj600 32908 nosupno 33915 nosupfv 33918 noinfno 33930 noinffv 33933 bj-eu3f 35034 wl-euae 35685 eu0 41134 fzisoeu 42846 ellimciota 43162 euabsneu 44533 iota0ndef 44544 aiota0ndef 44600 reutruALT 46163 mo0sn 46172 thincn0eu 46324 |
Copyright terms: Public domain | W3C validator |