| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-eu | Structured version Visualization version GIF version | ||
| Description: Define the existential
uniqueness quantifier. This expresses unique
existence, or existential uniqueness, which is the conjunction of
existence (df-ex 1779) and uniqueness (df-mo 2538). The expression
∃!𝑥𝜑 is read "there exists exactly
one 𝑥 such that 𝜑 " or
"there exists a unique 𝑥 such that 𝜑". This is also
called the
"uniqueness quantifier" but that expression is also used for the
at-most-one quantifier df-mo 2538, therefore we avoid that ambiguous name.
Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2608, eu2 2607, eu3v 2568, and eu6 2572. As for double unique existence, beware that the expression ∃!𝑥∃!𝑦𝜑 means "there exists a unique 𝑥 such that there exists a unique 𝑦 such that 𝜑 " which is a weaker property than "there exists exactly one 𝑥 and one 𝑦 such that 𝜑 " (see 2eu4 2653). (Contributed by NM, 12-Aug-1993.) Make this the definition (which used to be eu6 2572, while this definition was then proved as dfeu 2593). (Revised by BJ, 30-Sep-2022.) |
| Ref | Expression |
|---|---|
| df-eu | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | weu 2566 | . 2 wff ∃!𝑥𝜑 |
| 4 | 1, 2 | wex 1778 | . . 3 wff ∃𝑥𝜑 |
| 5 | 1, 2 | wmo 2536 | . . 3 wff ∃*𝑥𝜑 |
| 6 | 4, 5 | wa 395 | . 2 wff (∃𝑥𝜑 ∧ ∃*𝑥𝜑) |
| 7 | 3, 6 | wb 206 | 1 wff (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: eu3v 2568 euex 2575 eumo 2576 exmoeub 2578 moeuex 2580 eubi 2582 eubii 2583 nfeu1ALT 2587 nfeud2 2588 nfeudw 2589 cbveuvw 2603 cbveuw 2604 cbveuALT 2606 eu2 2607 eu4 2613 2euswapv 2628 2euexv 2629 2exeuv 2630 2euex 2639 2euswap 2643 2exeu 2644 2eu4 2653 reu5 3365 eueq 3696 reuss2 4306 n0moeu 4339 reusv2lem1 5378 funcnv3 6616 fnres 6675 mptfnf 6683 fnopabg 6685 brprcneu 6876 brprcneuALT 6877 dff3 7100 finnisoeu 10135 dfac2b 10153 recmulnq 10986 uptx 23580 hausflf2 23953 nosupno 27685 nosupfv 27688 noinfno 27700 noinffv 27703 adjeu 31837 bnj151 34866 bnj600 34908 cbveudavw 36227 bj-eu3f 36817 wl-euae 37493 onsucf1olem 43260 eu0 43510 fzisoeu 45284 ellimciota 45601 euabsneu 47013 iota0ndef 47024 aiota0ndef 47082 reutruALT 48698 mo0sn 48708 thincn0eu 49132 eufunc 49220 arweutermc 49228 |
| Copyright terms: Public domain | W3C validator |