![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-eu | Structured version Visualization version GIF version |
Description: Define the existential
uniqueness quantifier. This expresses unique
existence, or existential uniqueness, which is the conjunction of
existence (df-ex 1774) and uniqueness (df-mo 2526). The expression
∃!𝑥𝜑 is read "there exists exactly
one 𝑥 such that 𝜑 " or
"there exists a unique 𝑥 such that 𝜑". This is also
called the
"uniqueness quantifier" but that expression is also used for the
at-most-one quantifier df-mo 2526, therefore we avoid that ambiguous name.
Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2598, eu2 2597, eu3v 2556, and eu6 2560. As for double unique existence, beware that the expression ∃!𝑥∃!𝑦𝜑 means "there exists a unique 𝑥 such that there exists a unique 𝑦 such that 𝜑 " which is a weaker property than "there exists exactly one 𝑥 and one 𝑦 such that 𝜑 " (see 2eu4 2642). (Contributed by NM, 12-Aug-1993.) Make this the definition (which used to be eu6 2560, while this definition was then proved as dfeu 2581). (Revised by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
df-eu | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | weu 2554 | . 2 wff ∃!𝑥𝜑 |
4 | 1, 2 | wex 1773 | . . 3 wff ∃𝑥𝜑 |
5 | 1, 2 | wmo 2524 | . . 3 wff ∃*𝑥𝜑 |
6 | 4, 5 | wa 395 | . 2 wff (∃𝑥𝜑 ∧ ∃*𝑥𝜑) |
7 | 3, 6 | wb 205 | 1 wff (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: eu3v 2556 euex 2563 eumo 2564 exmoeub 2566 moeuex 2568 eubi 2570 eubii 2571 nfeu1ALT 2575 nfeud2 2576 nfeudw 2577 cbveuvw 2592 cbveuw 2593 cbveuALT 2596 eu2 2597 eu4 2603 2euswapv 2618 2euexv 2619 2exeuv 2620 2euex 2629 2euswap 2633 2exeu 2634 2eu4 2642 reu5 3370 eueq 3697 reuss2 4308 n0moeu 4349 reusv2lem1 5387 funcnv3 6609 fnres 6668 mptfnf 6676 fnopabg 6678 brprcneu 6872 brprcneuALT 6873 dff3 7092 finnisoeu 10105 dfac2b 10122 recmulnq 10956 uptx 23473 hausflf2 23846 nosupno 27577 nosupfv 27580 noinfno 27592 noinffv 27595 adjeu 31637 bnj151 34407 bnj600 34449 bj-eu3f 36221 wl-euae 36887 onsucf1olem 42570 eu0 42821 fzisoeu 44556 ellimciota 44876 euabsneu 46284 iota0ndef 46295 aiota0ndef 46351 reutruALT 47739 mo0sn 47748 thincn0eu 47900 |
Copyright terms: Public domain | W3C validator |