![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-eu | Structured version Visualization version GIF version |
Description: Define the existential
uniqueness quantifier. This expresses unique
existence, or existential uniqueness, which is the conjunction of
existence (df-ex 1775) and uniqueness (df-mo 2530). The expression
∃!𝑥𝜑 is read "there exists exactly
one 𝑥 such that 𝜑 " or
"there exists a unique 𝑥 such that 𝜑". This is also
called the
"uniqueness quantifier" but that expression is also used for the
at-most-one quantifier df-mo 2530, therefore we avoid that ambiguous name.
Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2602, eu2 2601, eu3v 2560, and eu6 2564. As for double unique existence, beware that the expression ∃!𝑥∃!𝑦𝜑 means "there exists a unique 𝑥 such that there exists a unique 𝑦 such that 𝜑 " which is a weaker property than "there exists exactly one 𝑥 and one 𝑦 such that 𝜑 " (see 2eu4 2646). (Contributed by NM, 12-Aug-1993.) Make this the definition (which used to be eu6 2564, while this definition was then proved as dfeu 2585). (Revised by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
df-eu | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | weu 2558 | . 2 wff ∃!𝑥𝜑 |
4 | 1, 2 | wex 1774 | . . 3 wff ∃𝑥𝜑 |
5 | 1, 2 | wmo 2528 | . . 3 wff ∃*𝑥𝜑 |
6 | 4, 5 | wa 395 | . 2 wff (∃𝑥𝜑 ∧ ∃*𝑥𝜑) |
7 | 3, 6 | wb 205 | 1 wff (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: eu3v 2560 euex 2567 eumo 2568 exmoeub 2570 moeuex 2572 eubi 2574 eubii 2575 nfeu1ALT 2579 nfeud2 2580 nfeudw 2581 cbveuvw 2596 cbveuw 2597 cbveuALT 2600 eu2 2601 eu4 2607 2euswapv 2622 2euexv 2623 2exeuv 2624 2euex 2633 2euswap 2637 2exeu 2638 2eu4 2646 reu5 3375 eueq 3703 reuss2 4316 n0moeu 4357 reusv2lem1 5398 funcnv3 6623 fnres 6682 mptfnf 6690 fnopabg 6692 brprcneu 6887 brprcneuALT 6888 dff3 7110 finnisoeu 10137 dfac2b 10154 recmulnq 10988 uptx 23542 hausflf2 23915 nosupno 27649 nosupfv 27652 noinfno 27664 noinffv 27667 adjeu 31712 bnj151 34508 bnj600 34550 bj-eu3f 36318 wl-euae 36984 onsucf1olem 42699 eu0 42950 fzisoeu 44682 ellimciota 45002 euabsneu 46410 iota0ndef 46421 aiota0ndef 46477 reutruALT 47877 mo0sn 47886 thincn0eu 48038 |
Copyright terms: Public domain | W3C validator |