| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-eu | Structured version Visualization version GIF version | ||
| Description: Define the existential
uniqueness quantifier. This expresses unique
existence, or existential uniqueness, which is the conjunction of
existence (df-ex 1780) and uniqueness (df-mo 2533). The expression
∃!𝑥𝜑 is read "there exists exactly
one 𝑥 such that 𝜑 " or
"there exists a unique 𝑥 such that 𝜑". This is also
called the
"uniqueness quantifier" but that expression is also used for the
at-most-one quantifier df-mo 2533, therefore we avoid that ambiguous name.
Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2603, eu2 2602, eu3v 2563, and eu6 2567. As for double unique existence, beware that the expression ∃!𝑥∃!𝑦𝜑 means "there exists a unique 𝑥 such that there exists a unique 𝑦 such that 𝜑 " which is a weaker property than "there exists exactly one 𝑥 and one 𝑦 such that 𝜑 " (see 2eu4 2648). (Contributed by NM, 12-Aug-1993.) Make this the definition (which used to be eu6 2567, while this definition was then proved as dfeu 2588). (Revised by BJ, 30-Sep-2022.) |
| Ref | Expression |
|---|---|
| df-eu | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | weu 2561 | . 2 wff ∃!𝑥𝜑 |
| 4 | 1, 2 | wex 1779 | . . 3 wff ∃𝑥𝜑 |
| 5 | 1, 2 | wmo 2531 | . . 3 wff ∃*𝑥𝜑 |
| 6 | 4, 5 | wa 395 | . 2 wff (∃𝑥𝜑 ∧ ∃*𝑥𝜑) |
| 7 | 3, 6 | wb 206 | 1 wff (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: eu3v 2563 euex 2570 eumo 2571 exmoeub 2573 moeuex 2575 eubi 2577 eubii 2578 nfeu1ALT 2582 nfeud2 2583 nfeudw 2584 cbveuvw 2598 cbveuw 2599 cbveuALT 2601 eu2 2602 eu4 2608 2euswapv 2623 2euexv 2624 2exeuv 2625 2euex 2634 2euswap 2638 2exeu 2639 2eu4 2648 reu5 3356 eueq 3679 reuss2 4289 n0moeu 4322 reusv2lem1 5353 funcnv3 6586 fnres 6645 mptfnf 6653 fnopabg 6655 brprcneu 6848 brprcneuALT 6849 dff3 7072 finnisoeu 10066 dfac2b 10084 recmulnq 10917 uptx 23512 hausflf2 23885 nosupno 27615 nosupfv 27618 noinfno 27630 noinffv 27633 adjeu 31818 bnj151 34867 bnj600 34909 cbveudavw 36239 bj-eu3f 36829 wl-euae 37505 onsucf1olem 43259 eu0 43509 fzisoeu 45298 ellimciota 45612 euabsneu 47029 iota0ndef 47040 aiota0ndef 47098 reutruALT 48793 mo0sn 48804 thincn0eu 49420 eufunc 49511 arweutermc 49519 |
| Copyright terms: Public domain | W3C validator |