| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-eu | Structured version Visualization version GIF version | ||
| Description: Define the existential
uniqueness quantifier. This expresses unique
existence, or existential uniqueness, which is the conjunction of
existence (df-ex 1780) and uniqueness (df-mo 2534). The expression
∃!𝑥𝜑 is read "there exists exactly
one 𝑥 such that 𝜑 " or
"there exists a unique 𝑥 such that 𝜑". This is also
called the
"uniqueness quantifier" but that expression is also used for the
at-most-one quantifier df-mo 2534, therefore we avoid that ambiguous name.
Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2604, eu2 2603, eu3v 2564, and eu6 2568. As for double unique existence, beware that the expression ∃!𝑥∃!𝑦𝜑 means "there exists a unique 𝑥 such that there exists a unique 𝑦 such that 𝜑 " which is a weaker property than "there exists exactly one 𝑥 and one 𝑦 such that 𝜑 " (see 2eu4 2649). (Contributed by NM, 12-Aug-1993.) Make this the definition (which used to be eu6 2568, while this definition was then proved as dfeu 2589). (Revised by BJ, 30-Sep-2022.) |
| Ref | Expression |
|---|---|
| df-eu | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | weu 2562 | . 2 wff ∃!𝑥𝜑 |
| 4 | 1, 2 | wex 1779 | . . 3 wff ∃𝑥𝜑 |
| 5 | 1, 2 | wmo 2532 | . . 3 wff ∃*𝑥𝜑 |
| 6 | 4, 5 | wa 395 | . 2 wff (∃𝑥𝜑 ∧ ∃*𝑥𝜑) |
| 7 | 3, 6 | wb 206 | 1 wff (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: eu3v 2564 euex 2571 eumo 2572 exmoeub 2574 moeuex 2576 eubi 2578 eubii 2579 nfeu1ALT 2583 nfeud2 2584 nfeudw 2585 cbveuvw 2599 cbveuw 2600 cbveuALT 2602 eu2 2603 eu4 2609 2euswapv 2624 2euexv 2625 2exeuv 2626 2euex 2635 2euswap 2639 2exeu 2640 2eu4 2649 reu5 3358 eueq 3681 reuss2 4291 n0moeu 4324 reusv2lem1 5355 funcnv3 6588 fnres 6647 mptfnf 6655 fnopabg 6657 brprcneu 6850 brprcneuALT 6851 dff3 7074 finnisoeu 10072 dfac2b 10090 recmulnq 10923 uptx 23518 hausflf2 23891 nosupno 27621 nosupfv 27624 noinfno 27636 noinffv 27639 adjeu 31824 bnj151 34873 bnj600 34915 cbveudavw 36234 bj-eu3f 36824 wl-euae 37500 onsucf1olem 43252 eu0 43502 fzisoeu 45291 ellimciota 45605 euabsneu 47019 iota0ndef 47030 aiota0ndef 47088 reutruALT 48783 mo0sn 48794 thincn0eu 49400 eufunc 49491 arweutermc 49499 |
| Copyright terms: Public domain | W3C validator |