![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-eu | Structured version Visualization version GIF version |
Description: Define the existential
uniqueness quantifier. This expresses unique
existence, or existential uniqueness, which is the conjunction of
existence (df-ex 1778) and uniqueness (df-mo 2543). The expression
∃!𝑥𝜑 is read "there exists exactly
one 𝑥 such that 𝜑 " or
"there exists a unique 𝑥 such that 𝜑". This is also
called the
"uniqueness quantifier" but that expression is also used for the
at-most-one quantifier df-mo 2543, therefore we avoid that ambiguous name.
Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2613, eu2 2612, eu3v 2573, and eu6 2577. As for double unique existence, beware that the expression ∃!𝑥∃!𝑦𝜑 means "there exists a unique 𝑥 such that there exists a unique 𝑦 such that 𝜑 " which is a weaker property than "there exists exactly one 𝑥 and one 𝑦 such that 𝜑 " (see 2eu4 2658). (Contributed by NM, 12-Aug-1993.) Make this the definition (which used to be eu6 2577, while this definition was then proved as dfeu 2598). (Revised by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
df-eu | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | weu 2571 | . 2 wff ∃!𝑥𝜑 |
4 | 1, 2 | wex 1777 | . . 3 wff ∃𝑥𝜑 |
5 | 1, 2 | wmo 2541 | . . 3 wff ∃*𝑥𝜑 |
6 | 4, 5 | wa 395 | . 2 wff (∃𝑥𝜑 ∧ ∃*𝑥𝜑) |
7 | 3, 6 | wb 206 | 1 wff (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: eu3v 2573 euex 2580 eumo 2581 exmoeub 2583 moeuex 2585 eubi 2587 eubii 2588 nfeu1ALT 2592 nfeud2 2593 nfeudw 2594 cbveuvw 2608 cbveuw 2609 cbveuALT 2611 eu2 2612 eu4 2618 2euswapv 2633 2euexv 2634 2exeuv 2635 2euex 2644 2euswap 2648 2exeu 2649 2eu4 2658 reu5 3390 eueq 3730 reuss2 4345 n0moeu 4382 reusv2lem1 5416 funcnv3 6643 fnres 6702 mptfnf 6710 fnopabg 6712 brprcneu 6905 brprcneuALT 6906 dff3 7129 finnisoeu 10176 dfac2b 10194 recmulnq 11027 uptx 23646 hausflf2 24019 nosupno 27758 nosupfv 27761 noinfno 27773 noinffv 27776 adjeu 31913 bnj151 34845 bnj600 34887 cbveudavw 36209 bj-eu3f 36799 wl-euae 37463 onsucf1olem 43227 eu0 43477 fzisoeu 45204 ellimciota 45524 euabsneu 46932 iota0ndef 46943 aiota0ndef 47001 reutruALT 48527 mo0sn 48536 thincn0eu 48688 |
Copyright terms: Public domain | W3C validator |