Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-eu | Structured version Visualization version GIF version |
Description: Define the existential
uniqueness quantifier. This expresses unique
existence, or existential uniqueness, which is the conjunction of
existence (df-ex 1781) and uniqueness (df-mo 2538). The expression
∃!𝑥𝜑 is read "there exists exactly
one 𝑥 such that 𝜑 " or
"there exists a unique 𝑥 such that 𝜑". This is also
called the
"uniqueness quantifier" but that expression is also used for the
at-most-one quantifier df-mo 2538, therefore we avoid that ambiguous name.
Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2610, eu2 2609, eu3v 2568, and eu6 2572. As for double unique existence, beware that the expression ∃!𝑥∃!𝑦𝜑 means "there exists a unique 𝑥 such that there exists a unique 𝑦 such that 𝜑 " which is a weaker property than "there exists exactly one 𝑥 and one 𝑦 such that 𝜑 " (see 2eu4 2654). (Contributed by NM, 12-Aug-1993.) Make this the definition (which used to be eu6 2572, while this definition was then proved as dfeu 2593). (Revised by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
df-eu | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | weu 2566 | . 2 wff ∃!𝑥𝜑 |
4 | 1, 2 | wex 1780 | . . 3 wff ∃𝑥𝜑 |
5 | 1, 2 | wmo 2536 | . . 3 wff ∃*𝑥𝜑 |
6 | 4, 5 | wa 396 | . 2 wff (∃𝑥𝜑 ∧ ∃*𝑥𝜑) |
7 | 3, 6 | wb 205 | 1 wff (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: eu3v 2568 euex 2575 eumo 2576 exmoeub 2578 moeuex 2580 eubi 2582 eubii 2583 nfeu1ALT 2587 nfeud2 2588 nfeudw 2589 cbveuvw 2604 cbveuw 2605 cbveuALT 2608 eu2 2609 eu4 2615 2euswapv 2630 2euexv 2631 2exeuv 2632 2euex 2641 2euswap 2645 2exeu 2646 2eu4 2654 reu5 3351 eueq 3654 reuss2 4263 n0moeu 4304 reusv2lem1 5342 funcnv3 6555 fnres 6612 mptfnf 6620 fnopabg 6622 brprcneu 6816 brprcneuALT 6817 dff3 7033 finnisoeu 9971 dfac2b 9988 recmulnq 10822 uptx 22883 hausflf2 23256 nosupno 26958 nosupfv 26961 noinfno 26973 noinffv 26976 adjeu 30540 bnj151 33156 bnj600 33198 bj-eu3f 35163 wl-euae 35832 eu0 41501 fzisoeu 43226 ellimciota 43543 euabsneu 44940 iota0ndef 44951 aiota0ndef 45007 reutruALT 46570 mo0sn 46579 thincn0eu 46731 |
Copyright terms: Public domain | W3C validator |