| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-eu | Structured version Visualization version GIF version | ||
| Description: Define the existential
uniqueness quantifier. This expresses unique
existence, or existential uniqueness, which is the conjunction of
existence (df-ex 1781) and uniqueness (df-mo 2534). The expression
∃!𝑥𝜑 is read "there exists exactly
one 𝑥 such that 𝜑 " or
"there exists a unique 𝑥 such that 𝜑". This is also
called the
"uniqueness quantifier" but that expression is also used for the
at-most-one quantifier df-mo 2534, therefore we avoid that ambiguous name.
Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2604, eu2 2603, eu3v 2564, and eu6 2568. As for double unique existence, beware that the expression ∃!𝑥∃!𝑦𝜑 means "there exists a unique 𝑥 such that there exists a unique 𝑦 such that 𝜑 " which is a weaker property than "there exists exactly one 𝑥 and one 𝑦 such that 𝜑 " (see 2eu4 2649). (Contributed by NM, 12-Aug-1993.) Make this the definition (which used to be eu6 2568, while this definition was then proved as dfeu 2589). (Revised by BJ, 30-Sep-2022.) |
| Ref | Expression |
|---|---|
| df-eu | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | weu 2562 | . 2 wff ∃!𝑥𝜑 |
| 4 | 1, 2 | wex 1780 | . . 3 wff ∃𝑥𝜑 |
| 5 | 1, 2 | wmo 2532 | . . 3 wff ∃*𝑥𝜑 |
| 6 | 4, 5 | wa 395 | . 2 wff (∃𝑥𝜑 ∧ ∃*𝑥𝜑) |
| 7 | 3, 6 | wb 206 | 1 wff (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: eu3v 2564 euex 2571 eumo 2572 exmoeub 2574 moeuex 2576 eubi 2578 eubii 2579 nfeu1ALT 2583 nfeud2 2584 nfeudw 2585 cbveuvw 2599 cbveuw 2600 cbveuALT 2602 eu2 2603 eu4 2609 2euswapv 2624 2euexv 2625 2exeuv 2626 2euex 2635 2euswap 2639 2exeu 2640 2eu4 2649 reu5 3346 eueq 3665 reuss2 4274 n0moeu 4307 reusv2lem1 5334 funcnv3 6547 fnres 6604 mptfnf 6612 fnopabg 6614 brprcneu 6807 brprcneuALT 6808 dff3 7028 finnisoeu 9996 dfac2b 10014 recmulnq 10847 uptx 23533 hausflf2 23906 nosupno 27635 nosupfv 27638 noinfno 27650 noinffv 27653 adjeu 31859 bnj151 34879 bnj600 34921 cbveudavw 36264 bj-eu3f 36854 wl-euae 37530 onsucf1olem 43282 eu0 43532 fzisoeu 45320 ellimciota 45633 euabsneu 47038 iota0ndef 47049 aiota0ndef 47107 reutruALT 48815 mo0sn 48826 thincn0eu 49442 eufunc 49533 arweutermc 49541 |
| Copyright terms: Public domain | W3C validator |