MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun2 Structured version   Visualization version   GIF version

Theorem dffun2 6443
Description: Alternate definition of a function. (Contributed by NM, 29-Dec-1996.) Avoid ax-10 2137, ax-12 2171. (Revised by SN, 11-Nov-2024.)
Assertion
Ref Expression
dffun2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dffun2
StepHypRef Expression
1 df-fun 6435 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
2 relco 6148 . . . . 5 Rel (𝐴𝐴)
3 ssrel 5693 . . . . 5 (Rel (𝐴𝐴) → ((𝐴𝐴) ⊆ I ↔ ∀𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ (𝐴𝐴) → ⟨𝑦, 𝑧⟩ ∈ I )))
42, 3ax-mp 5 . . . 4 ((𝐴𝐴) ⊆ I ↔ ∀𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ (𝐴𝐴) → ⟨𝑦, 𝑧⟩ ∈ I ))
5 vex 3436 . . . . . . . 8 𝑦 ∈ V
6 vex 3436 . . . . . . . 8 𝑧 ∈ V
75, 6opelco 5780 . . . . . . 7 (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐴) ↔ ∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧))
8 vex 3436 . . . . . . . . . 10 𝑥 ∈ V
95, 8brcnv 5791 . . . . . . . . 9 (𝑦𝐴𝑥𝑥𝐴𝑦)
109anbi1i 624 . . . . . . . 8 ((𝑦𝐴𝑥𝑥𝐴𝑧) ↔ (𝑥𝐴𝑦𝑥𝐴𝑧))
1110exbii 1850 . . . . . . 7 (∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) ↔ ∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧))
127, 11bitri 274 . . . . . 6 (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐴) ↔ ∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧))
13 df-br 5075 . . . . . . 7 (𝑦 I 𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ I )
146ideq 5761 . . . . . . 7 (𝑦 I 𝑧𝑦 = 𝑧)
1513, 14bitr3i 276 . . . . . 6 (⟨𝑦, 𝑧⟩ ∈ I ↔ 𝑦 = 𝑧)
1612, 15imbi12i 351 . . . . 5 ((⟨𝑦, 𝑧⟩ ∈ (𝐴𝐴) → ⟨𝑦, 𝑧⟩ ∈ I ) ↔ (∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
17162albii 1823 . . . 4 (∀𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ (𝐴𝐴) → ⟨𝑦, 𝑧⟩ ∈ I ) ↔ ∀𝑦𝑧(∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
18 alrot3 2157 . . . . 5 (∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦𝑧𝑥((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
19 19.23v 1945 . . . . . 6 (∀𝑥((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ (∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
20192albii 1823 . . . . 5 (∀𝑦𝑧𝑥((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦𝑧(∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
2118, 20bitr2i 275 . . . 4 (∀𝑦𝑧(∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
224, 17, 213bitri 297 . . 3 ((𝐴𝐴) ⊆ I ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
2322anbi2i 623 . 2 ((Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ) ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
241, 23bitri 274 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  wss 3887  cop 4567   class class class wbr 5074   I cid 5488  ccnv 5588  ccom 5593  Rel wrel 5594  Fun wfun 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-fun 6435
This theorem is referenced by:  dffun3  6445  dffun4  6446  fundif  6483  fliftfun  7183  frrlem9  8110  fprlem1  8116  wfrlem5OLD  8144  wfrfunOLD  8150  frrlem15  9515  fpwwe2lem10  10396  fclim  15262  invfun  17476  lmfun  22532  ulmdm  25552  fundmpss  33740  fununiq  33743  fnsingle  34221  funimage  34230  funpartfun  34245
  Copyright terms: Public domain W3C validator