Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun2 Structured version   Visualization version   GIF version

Theorem dffun2 6368
 Description: Alternate definition of a function. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem dffun2
StepHypRef Expression
1 df-fun 6360 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
2 df-id 5463 . . . . . 6 I = {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧}
32sseq2i 3999 . . . . 5 ((𝐴𝐴) ⊆ I ↔ (𝐴𝐴) ⊆ {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧})
4 df-co 5567 . . . . . 6 (𝐴𝐴) = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧)}
54sseq1i 3998 . . . . 5 ((𝐴𝐴) ⊆ {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧} ↔ {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧)} ⊆ {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧})
6 ssopab2bw 5437 . . . . 5 ({⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧)} ⊆ {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧} ↔ ∀𝑦𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧))
73, 5, 63bitri 299 . . . 4 ((𝐴𝐴) ⊆ I ↔ ∀𝑦𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧))
8 vex 3500 . . . . . . . . . . . 12 𝑦 ∈ V
9 vex 3500 . . . . . . . . . . . 12 𝑥 ∈ V
108, 9brcnv 5756 . . . . . . . . . . 11 (𝑦𝐴𝑥𝑥𝐴𝑦)
1110anbi1i 625 . . . . . . . . . 10 ((𝑦𝐴𝑥𝑥𝐴𝑧) ↔ (𝑥𝐴𝑦𝑥𝐴𝑧))
1211exbii 1847 . . . . . . . . 9 (∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) ↔ ∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧))
1312imbi1i 352 . . . . . . . 8 ((∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ (∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
14 19.23v 1942 . . . . . . . 8 (∀𝑥((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ (∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
1513, 14bitr4i 280 . . . . . . 7 ((∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
1615albii 1819 . . . . . 6 (∀𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑧𝑥((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
17 alcom 2162 . . . . . 6 (∀𝑧𝑥((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
1816, 17bitri 277 . . . . 5 (∀𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
1918albii 1819 . . . 4 (∀𝑦𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦𝑥𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
20 alcom 2162 . . . 4 (∀𝑦𝑥𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
217, 19, 203bitri 299 . . 3 ((𝐴𝐴) ⊆ I ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
2221anbi2i 624 . 2 ((Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ) ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
231, 22bitri 277 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398  ∀wal 1534  ∃wex 1779   ⊆ wss 3939   class class class wbr 5069  {copab 5131   I cid 5462  ◡ccnv 5557   ∘ ccom 5562  Rel wrel 5563  Fun wfun 6352 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-br 5070  df-opab 5132  df-id 5463  df-cnv 5566  df-co 5567  df-fun 6360 This theorem is referenced by:  dffun3  6369  dffun4  6370  fundif  6406  fliftfun  7068  wfrlem5  7962  wfrfun  7968  fpwwe2lem11  10065  fclim  14913  invfun  17037  lmfun  21992  ulmdm  24984  fundmpss  33013  fununiq  33016  frrlem9  33135  fprlem1  33141  frrlem15  33146  fnsingle  33384  funimage  33393  funpartfun  33408
 Copyright terms: Public domain W3C validator