MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun2 Structured version   Visualization version   GIF version

Theorem dffun2 6546
Description: Alternate definition of a function. (Contributed by NM, 29-Dec-1996.) Avoid ax-10 2142, ax-12 2178. (Revised by SN, 19-Dec-2024.) Avoid ax-11 2158. (Revised by BTernaryTau, 29-Dec-2024.)
Assertion
Ref Expression
dffun2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dffun2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-fun 6538 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
2 cotrg 6101 . . . 4 ((𝐴𝐴) ⊆ I ↔ ∀𝑦𝑥𝑧((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧))
3 breq1 5127 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑦𝐴𝑥𝑤𝐴𝑥))
43anbi1d 631 . . . . . . . 8 (𝑦 = 𝑤 → ((𝑦𝐴𝑥𝑥𝐴𝑧) ↔ (𝑤𝐴𝑥𝑥𝐴𝑧)))
5 breq1 5127 . . . . . . . 8 (𝑦 = 𝑤 → (𝑦 I 𝑧𝑤 I 𝑧))
64, 5imbi12d 344 . . . . . . 7 (𝑦 = 𝑤 → (((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ((𝑤𝐴𝑥𝑥𝐴𝑧) → 𝑤 I 𝑧)))
76albidv 1920 . . . . . 6 (𝑦 = 𝑤 → (∀𝑧((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑧((𝑤𝐴𝑥𝑥𝐴𝑧) → 𝑤 I 𝑧)))
8 breq2 5128 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑦𝐴𝑥𝑦𝐴𝑤))
9 breq1 5127 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥𝐴𝑧𝑤𝐴𝑧))
108, 9anbi12d 632 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑦𝐴𝑥𝑥𝐴𝑧) ↔ (𝑦𝐴𝑤𝑤𝐴𝑧)))
1110imbi1d 341 . . . . . . 7 (𝑥 = 𝑤 → (((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ((𝑦𝐴𝑤𝑤𝐴𝑧) → 𝑦 I 𝑧)))
1211albidv 1920 . . . . . 6 (𝑥 = 𝑤 → (∀𝑧((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑧((𝑦𝐴𝑤𝑤𝐴𝑧) → 𝑦 I 𝑧)))
137, 12alcomw 2045 . . . . 5 (∀𝑦𝑥𝑧((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑥𝑦𝑧((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧))
14 vex 3468 . . . . . . . . 9 𝑦 ∈ V
15 vex 3468 . . . . . . . . 9 𝑥 ∈ V
1614, 15brcnv 5867 . . . . . . . 8 (𝑦𝐴𝑥𝑥𝐴𝑦)
1716anbi1i 624 . . . . . . 7 ((𝑦𝐴𝑥𝑥𝐴𝑧) ↔ (𝑥𝐴𝑦𝑥𝐴𝑧))
18 vex 3468 . . . . . . . 8 𝑧 ∈ V
1918ideq 5837 . . . . . . 7 (𝑦 I 𝑧𝑦 = 𝑧)
2017, 19imbi12i 350 . . . . . 6 (((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
21203albii 1821 . . . . 5 (∀𝑥𝑦𝑧((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
2213, 21bitri 275 . . . 4 (∀𝑦𝑥𝑧((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
232, 22bitri 275 . . 3 ((𝐴𝐴) ⊆ I ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
2423anbi2i 623 . 2 ((Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ) ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
251, 24bitri 275 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wss 3931   class class class wbr 5124   I cid 5552  ccnv 5658  ccom 5663  Rel wrel 5664  Fun wfun 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-fun 6538
This theorem is referenced by:  dffun6  6549  dffun3OLD  6551  dffun4  6552  fundif  6590  fliftfun  7310  frrlem9  8298  fprlem1  8304  wfrlem5OLD  8332  wfrfunOLD  8338  frrlem15  9776  fpwwe2lem10  10659  fclim  15574  invfun  17782  lmfun  23324  ulmdm  26359  fundmpss  35789  fununiq  35791  fnsingle  35942  funimage  35951  funpartfun  35966  functhincfun  49302
  Copyright terms: Public domain W3C validator