MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun2 Structured version   Visualization version   GIF version

Theorem dffun2 6521
Description: Alternate definition of a function. (Contributed by NM, 29-Dec-1996.) Avoid ax-10 2142, ax-12 2178. (Revised by SN, 19-Dec-2024.) Avoid ax-11 2158. (Revised by BTernaryTau, 29-Dec-2024.)
Assertion
Ref Expression
dffun2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dffun2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-fun 6513 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
2 cotrg 6080 . . . 4 ((𝐴𝐴) ⊆ I ↔ ∀𝑦𝑥𝑧((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧))
3 breq1 5110 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑦𝐴𝑥𝑤𝐴𝑥))
43anbi1d 631 . . . . . . . 8 (𝑦 = 𝑤 → ((𝑦𝐴𝑥𝑥𝐴𝑧) ↔ (𝑤𝐴𝑥𝑥𝐴𝑧)))
5 breq1 5110 . . . . . . . 8 (𝑦 = 𝑤 → (𝑦 I 𝑧𝑤 I 𝑧))
64, 5imbi12d 344 . . . . . . 7 (𝑦 = 𝑤 → (((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ((𝑤𝐴𝑥𝑥𝐴𝑧) → 𝑤 I 𝑧)))
76albidv 1920 . . . . . 6 (𝑦 = 𝑤 → (∀𝑧((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑧((𝑤𝐴𝑥𝑥𝐴𝑧) → 𝑤 I 𝑧)))
8 breq2 5111 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑦𝐴𝑥𝑦𝐴𝑤))
9 breq1 5110 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥𝐴𝑧𝑤𝐴𝑧))
108, 9anbi12d 632 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑦𝐴𝑥𝑥𝐴𝑧) ↔ (𝑦𝐴𝑤𝑤𝐴𝑧)))
1110imbi1d 341 . . . . . . 7 (𝑥 = 𝑤 → (((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ((𝑦𝐴𝑤𝑤𝐴𝑧) → 𝑦 I 𝑧)))
1211albidv 1920 . . . . . 6 (𝑥 = 𝑤 → (∀𝑧((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑧((𝑦𝐴𝑤𝑤𝐴𝑧) → 𝑦 I 𝑧)))
137, 12alcomw 2045 . . . . 5 (∀𝑦𝑥𝑧((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑥𝑦𝑧((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧))
14 vex 3451 . . . . . . . . 9 𝑦 ∈ V
15 vex 3451 . . . . . . . . 9 𝑥 ∈ V
1614, 15brcnv 5846 . . . . . . . 8 (𝑦𝐴𝑥𝑥𝐴𝑦)
1716anbi1i 624 . . . . . . 7 ((𝑦𝐴𝑥𝑥𝐴𝑧) ↔ (𝑥𝐴𝑦𝑥𝐴𝑧))
18 vex 3451 . . . . . . . 8 𝑧 ∈ V
1918ideq 5816 . . . . . . 7 (𝑦 I 𝑧𝑦 = 𝑧)
2017, 19imbi12i 350 . . . . . 6 (((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
21203albii 1821 . . . . 5 (∀𝑥𝑦𝑧((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
2213, 21bitri 275 . . . 4 (∀𝑦𝑥𝑧((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
232, 22bitri 275 . . 3 ((𝐴𝐴) ⊆ I ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
2423anbi2i 623 . 2 ((Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ) ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
251, 24bitri 275 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wss 3914   class class class wbr 5107   I cid 5532  ccnv 5637  ccom 5642  Rel wrel 5643  Fun wfun 6505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-fun 6513
This theorem is referenced by:  dffun6  6524  dffun3OLD  6526  dffun4  6527  fundif  6565  fliftfun  7287  frrlem9  8273  fprlem1  8279  frrlem15  9710  fpwwe2lem10  10593  fclim  15519  invfun  17726  lmfun  23268  ulmdm  26302  fundmpss  35754  fununiq  35756  fnsingle  35907  funimage  35916  funpartfun  35931  functhincfun  49438
  Copyright terms: Public domain W3C validator