Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2albii | Structured version Visualization version GIF version |
Description: Inference adding two universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
albii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2albii | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | albii 1822 | . 2 ⊢ (∀𝑦𝜑 ↔ ∀𝑦𝜓) |
3 | 2 | albii 1822 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: 3albii 1824 sbcom2 2162 2sb6rf 2474 mo4f 2568 2mo2 2650 2mos 2652 r3al 3120 ralcom 3167 ralcomf 3284 nfnid 5299 ssrel3 5698 raliunxp 5751 cnvsym 6024 intasym 6025 intirr 6028 codir 6030 qfto 6031 dfpo2 6203 dffun4 6452 fun11 6515 fununi 6516 mpo2eqb 7415 aceq0 9883 zfac 10225 zfcndac 10384 addsrmo 10838 mulsrmo 10839 cotr2g 14696 isirred2 19952 bnj580 32902 bnj978 32938 axacprim 33657 dfso2 33731 dfon2lem8 33775 frpoins3xpg 33796 frpoins3xp3g 33797 dffun10 34225 wl-sbcom2d 35725 mpobi123f 36329 inxpss 36454 inxpss3 36456 trcoss2 36609 dford4 40858 isdomn3 41036 undmrnresiss 41219 cnvssco 41221 pm14.12 42046 ichn 44919 dfich2 44921 ichcom 44922 ichbi12i 44923 |
Copyright terms: Public domain | W3C validator |