| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2albii | Structured version Visualization version GIF version | ||
| Description: Inference adding two universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| albii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2albii | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | albii 1819 | . 2 ⊢ (∀𝑦𝜑 ↔ ∀𝑦𝜓) |
| 3 | 2 | albii 1819 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3albii 1821 sbcom2 2174 2sb6rf 2472 mo4f 2561 2mo2 2641 2mos 2643 2mosOLD 2644 r3al 3176 ralcom 3266 ralcomf 3278 sbccomlem 3835 nfnid 5333 ssrel3 5752 raliunxp 5806 cnvsym 6088 cnvsymOLD 6089 cnvsymOLDOLD 6090 intasym 6091 intirr 6094 codir 6096 qfto 6097 dfpo2 6272 dffun4 6530 fun11 6593 fununi 6594 mpo2eqb 7524 frpoins3xpg 8122 xpord3inddlem 8136 aceq0 10078 zfac 10420 zfcndac 10579 addsrmo 11033 mulsrmo 11034 cotr2g 14949 isirred2 20337 isdomn3 20631 bnj580 34910 bnj978 34946 axacprim 35701 dfso2 35749 dfon2lem8 35785 dffun10 35909 wl-sbcom2d 37556 mpobi123f 38163 r2alan 38245 inxpss 38306 inxpss3 38309 cnvref5 38340 trcoss2 38482 dfantisymrel5 38761 antisymrelres 38762 dford4 43025 undmrnresiss 43600 cnvssco 43602 pm14.12 44417 permac8prim 45011 ichn 47461 dfich2 47463 ichcom 47464 ichbi12i 47465 pg4cyclnex 48121 |
| Copyright terms: Public domain | W3C validator |