Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2albii | Structured version Visualization version GIF version |
Description: Inference adding two universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
albii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2albii | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | albii 1823 | . 2 ⊢ (∀𝑦𝜑 ↔ ∀𝑦𝜓) |
3 | 2 | albii 1823 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: sbcom2 2163 2sb6rf 2473 mo4f 2567 2mo2 2649 2mos 2651 r3al 3125 ralcom 3280 ralcomf 3282 nfnid 5293 raliunxp 5737 cnvsym 6008 intasym 6009 intirr 6012 codir 6014 qfto 6015 dfpo2 6188 dffun4 6430 fun11 6492 fununi 6493 mpo2eqb 7384 aceq0 9805 zfac 10147 zfcndac 10306 addsrmo 10760 mulsrmo 10761 cotr2g 14615 isirred2 19858 bnj580 32793 bnj978 32829 axacprim 33548 dfso2 33628 dfon2lem8 33672 frpoins3xpg 33714 frpoins3xp3g 33715 dffun10 34143 wl-sbcom2d 35643 mpobi123f 36247 3albii 36314 ssrel3 36361 inxpss 36374 inxpss3 36376 trcoss2 36529 dford4 40767 isdomn3 40945 undmrnresiss 41101 cnvssco 41103 pm14.12 41928 ichn 44796 dfich2 44798 ichcom 44799 ichbi12i 44800 |
Copyright terms: Public domain | W3C validator |