![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2albii | Structured version Visualization version GIF version |
Description: Inference adding two universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
albii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2albii | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | albii 1817 | . 2 ⊢ (∀𝑦𝜑 ↔ ∀𝑦𝜓) |
3 | 2 | albii 1817 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: 3albii 1819 sbcom2 2174 2sb6rf 2481 mo4f 2570 2mo2 2650 2mos 2652 2mosOLD 2653 r3al 3203 ralcom 3295 ralcomf 3308 sbccomlem 3891 nfnid 5393 ssrel3 5810 raliunxp 5864 cnvsym 6144 cnvsymOLD 6145 cnvsymOLDOLD 6146 intasym 6147 intirr 6150 codir 6152 qfto 6153 dfpo2 6327 dffun4 6589 fun11 6652 fununi 6653 mpo2eqb 7582 frpoins3xpg 8181 xpord3inddlem 8195 aceq0 10187 zfac 10529 zfcndac 10688 addsrmo 11142 mulsrmo 11143 cotr2g 15025 isirred2 20447 isdomn3 20737 bnj580 34889 bnj978 34925 axacprim 35669 dfso2 35717 dfon2lem8 35754 dffun10 35878 wl-sbcom2d 37515 mpobi123f 38122 r2alan 38205 inxpss 38267 inxpss3 38270 cnvref5 38307 trcoss2 38440 dfantisymrel5 38718 antisymrelres 38719 dford4 42986 undmrnresiss 43566 cnvssco 43568 pm14.12 44390 ichn 47330 dfich2 47332 ichcom 47333 ichbi12i 47334 |
Copyright terms: Public domain | W3C validator |