Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2albii | Structured version Visualization version GIF version |
Description: Inference adding two universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
albii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2albii | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | albii 1826 | . 2 ⊢ (∀𝑦𝜑 ↔ ∀𝑦𝜓) |
3 | 2 | albii 1826 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: sbcom2 2165 2sb6rf 2475 mo4f 2569 2mo2 2651 2mos 2653 r3al 3128 ralcom 3283 ralcomf 3285 nfnid 5302 raliunxp 5747 cnvsym 6018 intasym 6019 intirr 6022 codir 6024 qfto 6025 dfpo2 6198 dffun4 6444 fun11 6506 fununi 6507 mpo2eqb 7400 aceq0 9875 zfac 10217 zfcndac 10376 addsrmo 10830 mulsrmo 10831 cotr2g 14685 isirred2 19941 bnj580 32889 bnj978 32925 axacprim 33644 dfso2 33718 dfon2lem8 33762 frpoins3xpg 33783 frpoins3xp3g 33784 dffun10 34212 wl-sbcom2d 35712 mpobi123f 36316 3albii 36383 ssrel3 36430 inxpss 36443 inxpss3 36445 trcoss2 36598 dford4 40848 isdomn3 41026 undmrnresiss 41182 cnvssco 41184 pm14.12 42009 ichn 44877 dfich2 44879 ichcom 44880 ichbi12i 44881 |
Copyright terms: Public domain | W3C validator |