| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2albii | Structured version Visualization version GIF version | ||
| Description: Inference adding two universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| albii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2albii | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | albii 1820 | . 2 ⊢ (∀𝑦𝜑 ↔ ∀𝑦𝜓) |
| 3 | 2 | albii 1820 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3albii 1822 sbcom2 2176 2sb6rf 2473 mo4f 2562 2mo2 2642 2mos 2644 2mosOLD 2645 r3al 3170 ralcom 3260 ralcomf 3270 sbccomlem 3820 nfnid 5313 ssrel3 5726 raliunxp 5779 cnvsym 6061 intasym 6062 intirr 6065 codir 6067 qfto 6068 dfpo2 6243 dffun4 6494 fun11 6555 fununi 6556 mpo2eqb 7478 frpoins3xpg 8070 xpord3inddlem 8084 aceq0 10009 zfac 10351 zfcndac 10510 addsrmo 10964 mulsrmo 10965 cotr2g 14883 isirred2 20340 isdomn3 20631 bnj580 34923 bnj978 34959 axacprim 35749 dfso2 35797 dfon2lem8 35830 dffun10 35954 wl-sbcom2d 37601 mpobi123f 38208 r2alan 38290 inxpss 38351 inxpss3 38354 cnvref5 38385 trcoss2 38527 dfantisymrel5 38806 antisymrelres 38807 dford4 43068 undmrnresiss 43643 cnvssco 43645 pm14.12 44460 permac8prim 45053 ichn 47493 dfich2 47495 ichcom 47496 ichbi12i 47497 pg4cyclnex 48164 |
| Copyright terms: Public domain | W3C validator |