| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2albii | Structured version Visualization version GIF version | ||
| Description: Inference adding two universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| albii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2albii | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | albii 1820 | . 2 ⊢ (∀𝑦𝜑 ↔ ∀𝑦𝜓) |
| 3 | 2 | albii 1820 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3albii 1822 sbcom2 2178 2sb6rf 2475 mo4f 2564 2mo2 2644 2mos 2646 2mosOLD 2647 r3al 3171 ralcom 3261 ralcomf 3271 sbccomlem 3816 nfnid 5317 ssrel3 5732 raliunxp 5785 cnvsym 6067 intasym 6068 intirr 6071 codir 6073 qfto 6074 dfpo2 6250 dffun4 6501 fun11 6562 fununi 6563 mpo2eqb 7486 frpoins3xpg 8078 xpord3inddlem 8092 aceq0 10018 zfac 10360 zfcndac 10519 addsrmo 10973 mulsrmo 10974 cotr2g 14887 isirred2 20343 isdomn3 20634 bnj580 34948 bnj978 34984 axacprim 35774 dfso2 35822 dfon2lem8 35855 dffun10 35979 wl-sbcom2d 37628 mpobi123f 38225 r2alan 38309 inxpss 38372 inxpss3 38375 cnvref5 38406 trcoss2 38609 dfantisymrel5 38883 antisymrelres 38884 dford4 43149 undmrnresiss 43724 cnvssco 43726 pm14.12 44541 permac8prim 45134 ichn 47583 dfich2 47585 ichcom 47586 ichbi12i 47587 pg4cyclnex 48254 |
| Copyright terms: Public domain | W3C validator |