![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2albii | Structured version Visualization version GIF version |
Description: Inference adding two universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
albii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2albii | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | albii 1814 | . 2 ⊢ (∀𝑦𝜑 ↔ ∀𝑦𝜓) |
3 | 2 | albii 1814 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: 3albii 1816 sbcom2 2163 2sb6rf 2468 mo4f 2557 2mo2 2639 2mos 2641 r3al 3192 ralcom 3282 ralcomf 3295 nfnid 5369 ssrel3 5782 raliunxp 5836 cnvsym 6112 cnvsymOLD 6113 cnvsymOLDOLD 6114 intasym 6115 intirr 6118 codir 6120 qfto 6121 dfpo2 6294 dffun4 6558 fun11 6621 fununi 6622 mpo2eqb 7547 frpoins3xpg 8139 xpord3inddlem 8153 aceq0 10135 zfac 10477 zfcndac 10636 addsrmo 11090 mulsrmo 11091 cotr2g 14949 isirred2 20353 isdomn3 21241 bnj580 34538 bnj978 34574 axacprim 35295 dfso2 35343 dfon2lem8 35380 dffun10 35504 wl-sbcom2d 37022 mpobi123f 37629 r2alan 37714 inxpss 37777 inxpss3 37780 cnvref5 37817 trcoss2 37950 dfantisymrel5 38228 antisymrelres 38229 dford4 42444 undmrnresiss 43028 cnvssco 43030 pm14.12 43852 ichn 46790 dfich2 46792 ichcom 46793 ichbi12i 46794 |
Copyright terms: Public domain | W3C validator |