| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2albii | Structured version Visualization version GIF version | ||
| Description: Inference adding two universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| albii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2albii | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | albii 1819 | . 2 ⊢ (∀𝑦𝜑 ↔ ∀𝑦𝜓) |
| 3 | 2 | albii 1819 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3albii 1821 sbcom2 2174 2sb6rf 2478 mo4f 2567 2mo2 2647 2mos 2649 2mosOLD 2650 r3al 3183 ralcom 3274 ralcomf 3286 sbccomlem 3849 nfnid 5350 ssrel3 5770 raliunxp 5824 cnvsym 6106 cnvsymOLD 6107 cnvsymOLDOLD 6108 intasym 6109 intirr 6112 codir 6114 qfto 6115 dfpo2 6290 dffun4 6552 fun11 6615 fununi 6616 mpo2eqb 7544 frpoins3xpg 8144 xpord3inddlem 8158 aceq0 10137 zfac 10479 zfcndac 10638 addsrmo 11092 mulsrmo 11093 cotr2g 15000 isirred2 20386 isdomn3 20680 bnj580 34949 bnj978 34985 axacprim 35729 dfso2 35777 dfon2lem8 35813 dffun10 35937 wl-sbcom2d 37584 mpobi123f 38191 r2alan 38272 inxpss 38334 inxpss3 38337 cnvref5 38374 trcoss2 38507 dfantisymrel5 38785 antisymrelres 38786 dford4 43020 undmrnresiss 43595 cnvssco 43597 pm14.12 44412 ichn 47437 dfich2 47439 ichcom 47440 ichbi12i 47441 |
| Copyright terms: Public domain | W3C validator |