| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2albii | Structured version Visualization version GIF version | ||
| Description: Inference adding two universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| albii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2albii | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | albii 1818 | . 2 ⊢ (∀𝑦𝜑 ↔ ∀𝑦𝜓) |
| 3 | 2 | albii 1818 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3albii 1820 sbcom2 2172 2sb6rf 2476 mo4f 2565 2mo2 2645 2mos 2647 2mosOLD 2648 r3al 3184 ralcom 3273 ralcomf 3285 sbccomlem 3849 nfnid 5355 ssrel3 5776 raliunxp 5830 cnvsym 6112 cnvsymOLD 6113 cnvsymOLDOLD 6114 intasym 6115 intirr 6118 codir 6120 qfto 6121 dfpo2 6296 dffun4 6557 fun11 6620 fununi 6621 mpo2eqb 7547 frpoins3xpg 8147 xpord3inddlem 8161 aceq0 10140 zfac 10482 zfcndac 10641 addsrmo 11095 mulsrmo 11096 cotr2g 14998 isirred2 20390 isdomn3 20684 bnj580 34902 bnj978 34938 axacprim 35682 dfso2 35730 dfon2lem8 35766 dffun10 35890 wl-sbcom2d 37537 mpobi123f 38144 r2alan 38225 inxpss 38287 inxpss3 38290 cnvref5 38327 trcoss2 38460 dfantisymrel5 38738 antisymrelres 38739 dford4 43019 undmrnresiss 43594 cnvssco 43596 pm14.12 44412 ichn 47416 dfich2 47418 ichcom 47419 ichbi12i 47420 |
| Copyright terms: Public domain | W3C validator |