| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2albii | Structured version Visualization version GIF version | ||
| Description: Inference adding two universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| albii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2albii | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | albii 1819 | . 2 ⊢ (∀𝑦𝜑 ↔ ∀𝑦𝜓) |
| 3 | 2 | albii 1819 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3albii 1821 sbcom2 2174 2sb6rf 2471 mo4f 2560 2mo2 2640 2mos 2642 2mosOLD 2643 r3al 3175 ralcom 3265 ralcomf 3276 sbccomlem 3832 nfnid 5330 ssrel3 5749 raliunxp 5803 cnvsym 6085 cnvsymOLD 6086 cnvsymOLDOLD 6087 intasym 6088 intirr 6091 codir 6093 qfto 6094 dfpo2 6269 dffun4 6527 fun11 6590 fununi 6591 mpo2eqb 7521 frpoins3xpg 8119 xpord3inddlem 8133 aceq0 10071 zfac 10413 zfcndac 10572 addsrmo 11026 mulsrmo 11027 cotr2g 14942 isirred2 20330 isdomn3 20624 bnj580 34903 bnj978 34939 axacprim 35694 dfso2 35742 dfon2lem8 35778 dffun10 35902 wl-sbcom2d 37549 mpobi123f 38156 r2alan 38238 inxpss 38299 inxpss3 38302 cnvref5 38333 trcoss2 38475 dfantisymrel5 38754 antisymrelres 38755 dford4 43018 undmrnresiss 43593 cnvssco 43595 pm14.12 44410 permac8prim 45004 ichn 47457 dfich2 47459 ichcom 47460 ichbi12i 47461 pg4cyclnex 48117 |
| Copyright terms: Public domain | W3C validator |