Proof of Theorem xpord3inddlem
| Step | Hyp | Ref
| Expression |
| 1 | | xpord3.1 |
. . . 4
⊢ 𝑈 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st
‘(1st ‘𝑥))𝑅(1st ‘(1st
‘𝑦)) ∨
(1st ‘(1st ‘𝑥)) = (1st ‘(1st
‘𝑦))) ∧
((2nd ‘(1st ‘𝑥))𝑆(2nd ‘(1st
‘𝑦)) ∨
(2nd ‘(1st ‘𝑥)) = (2nd ‘(1st
‘𝑦))) ∧
((2nd ‘𝑥)𝑇(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦))) ∧ 𝑥 ≠ 𝑦))} |
| 2 | | xpord3inddlem.1 |
. . . 4
⊢ (𝜅 → 𝑅 Fr 𝐴) |
| 3 | | xpord3inddlem.4 |
. . . 4
⊢ (𝜅 → 𝑆 Fr 𝐵) |
| 4 | | xpord3inddlem.7 |
. . . 4
⊢ (𝜅 → 𝑇 Fr 𝐶) |
| 5 | 1, 2, 3, 4 | frxp3 8150 |
. . 3
⊢ (𝜅 → 𝑈 Fr ((𝐴 × 𝐵) × 𝐶)) |
| 6 | | xpord3inddlem.2 |
. . . 4
⊢ (𝜅 → 𝑅 Po 𝐴) |
| 7 | | xpord3inddlem.5 |
. . . 4
⊢ (𝜅 → 𝑆 Po 𝐵) |
| 8 | | xpord3inddlem.8 |
. . . 4
⊢ (𝜅 → 𝑇 Po 𝐶) |
| 9 | 1, 6, 7, 8 | poxp3 8149 |
. . 3
⊢ (𝜅 → 𝑈 Po ((𝐴 × 𝐵) × 𝐶)) |
| 10 | | xpord3inddlem.3 |
. . . 4
⊢ (𝜅 → 𝑅 Se 𝐴) |
| 11 | | xpord3inddlem.6 |
. . . 4
⊢ (𝜅 → 𝑆 Se 𝐵) |
| 12 | | xpord3inddlem.9 |
. . . 4
⊢ (𝜅 → 𝑇 Se 𝐶) |
| 13 | 1, 10, 11, 12 | sexp3 8152 |
. . 3
⊢ (𝜅 → 𝑈 Se ((𝐴 × 𝐵) × 𝐶)) |
| 14 | | xpord3inddlem.x |
. . 3
⊢ (𝜅 → 𝑋 ∈ 𝐴) |
| 15 | | xpord3inddlem.y |
. . 3
⊢ (𝜅 → 𝑌 ∈ 𝐵) |
| 16 | | xpord3inddlem.z |
. . 3
⊢ (𝜅 → 𝑍 ∈ 𝐶) |
| 17 | | bi2.04 387 |
. . . . . . 7
⊢
((〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → (𝜅 → 𝜃)) ↔ (𝜅 → (〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃))) |
| 18 | 17 | 3albii 1821 |
. . . . . 6
⊢
(∀𝑑∀𝑒∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → (𝜅 → 𝜃)) ↔ ∀𝑑∀𝑒∀𝑓(𝜅 → (〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃))) |
| 19 | | 19.21v 1939 |
. . . . . . . 8
⊢
(∀𝑓(𝜅 → (〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃)) ↔ (𝜅 → ∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃))) |
| 20 | 19 | 2albii 1820 |
. . . . . . 7
⊢
(∀𝑑∀𝑒∀𝑓(𝜅 → (〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃)) ↔ ∀𝑑∀𝑒(𝜅 → ∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃))) |
| 21 | | 19.21v 1939 |
. . . . . . . . 9
⊢
(∀𝑒(𝜅 → ∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃)) ↔ (𝜅 → ∀𝑒∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃))) |
| 22 | 21 | albii 1819 |
. . . . . . . 8
⊢
(∀𝑑∀𝑒(𝜅 → ∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃)) ↔ ∀𝑑(𝜅 → ∀𝑒∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃))) |
| 23 | | 19.21v 1939 |
. . . . . . . 8
⊢
(∀𝑑(𝜅 → ∀𝑒∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃)) ↔ (𝜅 → ∀𝑑∀𝑒∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃))) |
| 24 | 22, 23 | bitri 275 |
. . . . . . 7
⊢
(∀𝑑∀𝑒(𝜅 → ∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃)) ↔ (𝜅 → ∀𝑑∀𝑒∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃))) |
| 25 | 20, 24 | bitri 275 |
. . . . . 6
⊢
(∀𝑑∀𝑒∀𝑓(𝜅 → (〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃)) ↔ (𝜅 → ∀𝑑∀𝑒∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃))) |
| 26 | 18, 25 | bitri 275 |
. . . . 5
⊢
(∀𝑑∀𝑒∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → (𝜅 → 𝜃)) ↔ (𝜅 → ∀𝑑∀𝑒∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃))) |
| 27 | 1 | xpord3pred 8151 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) = ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈𝑎, 𝑏, 𝑐〉})) |
| 28 | 27 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜅 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) = ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈𝑎, 𝑏, 𝑐〉})) |
| 29 | 28 | eleq2d 2820 |
. . . . . . . . . . . . . 14
⊢ ((𝜅 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) ↔ 〈𝑑, 𝑒, 𝑓〉 ∈ ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈𝑎, 𝑏, 𝑐〉}))) |
| 30 | 29 | imbi1d 341 |
. . . . . . . . . . . . 13
⊢ ((𝜅 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃) ↔ (〈𝑑, 𝑒, 𝑓〉 ∈ ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈𝑎, 𝑏, 𝑐〉}) → 𝜃))) |
| 31 | | eldifsn 4762 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑑, 𝑒, 𝑓〉 ∈ ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈𝑎, 𝑏, 𝑐〉}) ↔ (〈𝑑, 𝑒, 𝑓〉 ∈ (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∧ 〈𝑑, 𝑒, 𝑓〉 ≠ 〈𝑎, 𝑏, 𝑐〉)) |
| 32 | | otelxp 5698 |
. . . . . . . . . . . . . . . 16
⊢
(〈𝑑, 𝑒, 𝑓〉 ∈ (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ↔ (𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐}))) |
| 33 | | vex 3463 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑑 ∈ V |
| 34 | | vex 3463 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑒 ∈ V |
| 35 | | vex 3463 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑓 ∈ V |
| 36 | 33, 34, 35 | otthne 5461 |
. . . . . . . . . . . . . . . 16
⊢
(〈𝑑, 𝑒, 𝑓〉 ≠ 〈𝑎, 𝑏, 𝑐〉 ↔ (𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐)) |
| 37 | 32, 36 | anbi12i 628 |
. . . . . . . . . . . . . . 15
⊢
((〈𝑑, 𝑒, 𝑓〉 ∈ (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∧ 〈𝑑, 𝑒, 𝑓〉 ≠ 〈𝑎, 𝑏, 𝑐〉) ↔ ((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∧ (𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐))) |
| 38 | 31, 37 | bitri 275 |
. . . . . . . . . . . . . 14
⊢
(〈𝑑, 𝑒, 𝑓〉 ∈ ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈𝑎, 𝑏, 𝑐〉}) ↔ ((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∧ (𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐))) |
| 39 | 38 | imbi1i 349 |
. . . . . . . . . . . . 13
⊢
((〈𝑑, 𝑒, 𝑓〉 ∈ ((((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) × (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∖ {〈𝑎, 𝑏, 𝑐〉}) → 𝜃) ↔ (((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∧ (𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐)) → 𝜃)) |
| 40 | 30, 39 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ ((𝜅 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃) ↔ (((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∧ (𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐)) → 𝜃))) |
| 41 | | impexp 450 |
. . . . . . . . . . . 12
⊢ ((((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) ∧ (𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐)) → 𝜃) ↔ ((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
| 42 | 40, 41 | bitrdi 287 |
. . . . . . . . . . 11
⊢ ((𝜅 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃) ↔ ((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)))) |
| 43 | 42 | albidv 1920 |
. . . . . . . . . 10
⊢ ((𝜅 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃) ↔ ∀𝑓((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)))) |
| 44 | 43 | 2albidv 1923 |
. . . . . . . . 9
⊢ ((𝜅 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑑∀𝑒∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃) ↔ ∀𝑑∀𝑒∀𝑓((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)))) |
| 45 | | r3al 3182 |
. . . . . . . . . 10
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑑∀𝑒∀𝑓((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
| 46 | 45 | bicomi 224 |
. . . . . . . . 9
⊢
(∀𝑑∀𝑒∀𝑓((𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) ∧ 𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})) → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) ↔ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 47 | 44, 46 | bitrdi 287 |
. . . . . . . 8
⊢ ((𝜅 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑑∀𝑒∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃) ↔ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
| 48 | | ssun1 4153 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Pred(𝑇, 𝐶, 𝑐) ⊆ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐}) |
| 49 | | ssralv 4027 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Pred(𝑇, 𝐶, 𝑐) ⊆ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐}) → (∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
| 50 | 48, 49 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑓 ∈
(Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 51 | 50 | ralimi 3073 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑒 ∈
(Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 52 | | ssun1 4153 |
. . . . . . . . . . . . . . . . . . 19
⊢
Pred(𝑆, 𝐵, 𝑏) ⊆ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) |
| 53 | | ssralv 4027 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Pred(𝑆, 𝐵, 𝑏) ⊆ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) → (∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
| 54 | 52, 53 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑒 ∈
(Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 55 | 51, 54 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑒 ∈
(Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 56 | 55 | ralimi 3073 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 57 | | ssun1 4153 |
. . . . . . . . . . . . . . . . 17
⊢
Pred(𝑅, 𝐴, 𝑎) ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) |
| 58 | | ssralv 4027 |
. . . . . . . . . . . . . . . . 17
⊢
(Pred(𝑅, 𝐴, 𝑎) ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) → (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
| 59 | 57, 58 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 60 | 56, 59 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 61 | 60 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 62 | | predpoirr 6322 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑇 Po 𝐶 → ¬ 𝑐 ∈ Pred(𝑇, 𝐶, 𝑐)) |
| 63 | 8, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜅 → ¬ 𝑐 ∈ Pred(𝑇, 𝐶, 𝑐)) |
| 64 | | eleq1 2822 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 = 𝑐 → (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) ↔ 𝑐 ∈ Pred(𝑇, 𝐶, 𝑐))) |
| 65 | 64 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = 𝑐 → (¬ 𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) ↔ ¬ 𝑐 ∈ Pred(𝑇, 𝐶, 𝑐))) |
| 66 | 63, 65 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜅 → (𝑓 = 𝑐 → ¬ 𝑓 ∈ Pred(𝑇, 𝐶, 𝑐))) |
| 67 | 66 | necon2ad 2947 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜅 → (𝑓 ∈ Pred(𝑇, 𝐶, 𝑐) → 𝑓 ≠ 𝑐)) |
| 68 | 67 | imp 406 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜅 ∧ 𝑓 ∈ Pred(𝑇, 𝐶, 𝑐)) → 𝑓 ≠ 𝑐) |
| 69 | 68 | 3mix3d 1339 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜅 ∧ 𝑓 ∈ Pred(𝑇, 𝐶, 𝑐)) → (𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐)) |
| 70 | | pm2.27 42 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → (((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → 𝜃)) |
| 71 | 69, 70 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜅 ∧ 𝑓 ∈ Pred(𝑇, 𝐶, 𝑐)) → (((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → 𝜃)) |
| 72 | 71 | ralimdva 3152 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜅 → (∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃)) |
| 73 | 72 | ralimdv 3154 |
. . . . . . . . . . . . . . . 16
⊢ (𝜅 → (∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃)) |
| 74 | 73 | ralimdv 3154 |
. . . . . . . . . . . . . . 15
⊢ (𝜅 → (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃)) |
| 75 | 74 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃)) |
| 76 | 61, 75 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃) |
| 77 | | ssun2 4154 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝑐} ⊆ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐}) |
| 78 | | ssralv 4027 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑐} ⊆ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐}) → (∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
| 79 | 77, 78 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑓 ∈
(Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 80 | 79 | ralimi 3073 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑒 ∈
(Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 81 | | ssralv 4027 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Pred(𝑆, 𝐵, 𝑏) ⊆ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) → (∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
| 82 | 52, 81 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑒 ∈
(Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 83 | 80, 82 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑒 ∈
(Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 84 | 83 | ralimi 3073 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 85 | | ssralv 4027 |
. . . . . . . . . . . . . . . . . 18
⊢
(Pred(𝑅, 𝐴, 𝑎) ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) → (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
| 86 | 57, 85 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 87 | 84, 86 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 88 | | vex 3463 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑐 ∈ V |
| 89 | | biidd 262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑐 → (𝑑 ≠ 𝑎 ↔ 𝑑 ≠ 𝑎)) |
| 90 | | biidd 262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑐 → (𝑒 ≠ 𝑏 ↔ 𝑒 ≠ 𝑏)) |
| 91 | | neeq1 2994 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑐 → (𝑓 ≠ 𝑐 ↔ 𝑐 ≠ 𝑐)) |
| 92 | 89, 90, 91 | 3orbi123d 1437 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑐 → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) ↔ (𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐))) |
| 93 | | xpord3inddlem.12 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = 𝑓 → (𝜒 ↔ 𝜃)) |
| 94 | 93 | equcoms 2019 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑐 → (𝜒 ↔ 𝜃)) |
| 95 | 94 | bicomd 223 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑐 → (𝜃 ↔ 𝜒)) |
| 96 | 92, 95 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑐 → (((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒))) |
| 97 | 88, 96 | ralsn 4657 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑓 ∈
{𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒)) |
| 98 | 97 | 2ralbii 3115 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑑 ∈
Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒)) |
| 99 | 87, 98 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒)) |
| 100 | 99 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒)) |
| 101 | | predpoirr 6322 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑆 Po 𝐵 → ¬ 𝑏 ∈ Pred(𝑆, 𝐵, 𝑏)) |
| 102 | 7, 101 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜅 → ¬ 𝑏 ∈ Pred(𝑆, 𝐵, 𝑏)) |
| 103 | | eleq1 2822 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑒 = 𝑏 → (𝑒 ∈ Pred(𝑆, 𝐵, 𝑏) ↔ 𝑏 ∈ Pred(𝑆, 𝐵, 𝑏))) |
| 104 | 103 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑒 = 𝑏 → (¬ 𝑒 ∈ Pred(𝑆, 𝐵, 𝑏) ↔ ¬ 𝑏 ∈ Pred(𝑆, 𝐵, 𝑏))) |
| 105 | 102, 104 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜅 → (𝑒 = 𝑏 → ¬ 𝑒 ∈ Pred(𝑆, 𝐵, 𝑏))) |
| 106 | 105 | necon2ad 2947 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜅 → (𝑒 ∈ Pred(𝑆, 𝐵, 𝑏) → 𝑒 ≠ 𝑏)) |
| 107 | 106 | imp 406 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜅 ∧ 𝑒 ∈ Pred(𝑆, 𝐵, 𝑏)) → 𝑒 ≠ 𝑏) |
| 108 | 107 | 3mix2d 1338 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜅 ∧ 𝑒 ∈ Pred(𝑆, 𝐵, 𝑏)) → (𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐)) |
| 109 | | pm2.27 42 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → (((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒) → 𝜒)) |
| 110 | 108, 109 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜅 ∧ 𝑒 ∈ Pred(𝑆, 𝐵, 𝑏)) → (((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒) → 𝜒)) |
| 111 | 110 | ralimdva 3152 |
. . . . . . . . . . . . . . . 16
⊢ (𝜅 → (∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒)) |
| 112 | 111 | ralimdv 3154 |
. . . . . . . . . . . . . . 15
⊢ (𝜅 → (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒)) |
| 113 | 112 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒)) |
| 114 | 100, 113 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒) |
| 115 | | ssun2 4154 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑏} ⊆ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) |
| 116 | | ssralv 4027 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑏} ⊆ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) → (∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
| 117 | 115, 116 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑒 ∈
(Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 118 | 51, 117 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑒 ∈
(Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 119 | 118 | ralimi 3073 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 120 | | ssralv 4027 |
. . . . . . . . . . . . . . . . . 18
⊢
(Pred(𝑅, 𝐴, 𝑎) ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) → (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
| 121 | 57, 120 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 122 | 119, 121 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 123 | | vex 3463 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑏 ∈ V |
| 124 | | biidd 262 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 = 𝑏 → (𝑑 ≠ 𝑎 ↔ 𝑑 ≠ 𝑎)) |
| 125 | | neeq1 2994 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 = 𝑏 → (𝑒 ≠ 𝑏 ↔ 𝑏 ≠ 𝑏)) |
| 126 | | biidd 262 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 = 𝑏 → (𝑓 ≠ 𝑐 ↔ 𝑓 ≠ 𝑐)) |
| 127 | 124, 125,
126 | 3orbi123d 1437 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑏 → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) ↔ (𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐))) |
| 128 | | xpord3inddlem.15 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = 𝑒 → (𝜁 ↔ 𝜃)) |
| 129 | 128 | equcoms 2019 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 = 𝑏 → (𝜁 ↔ 𝜃)) |
| 130 | 129 | bicomd 223 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑏 → (𝜃 ↔ 𝜁)) |
| 131 | 127, 130 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = 𝑏 → (((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁))) |
| 132 | 131 | ralbidv 3163 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑏 → (∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁))) |
| 133 | 123, 132 | ralsn 4657 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑒 ∈
{𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁)) |
| 134 | 133 | ralbii 3082 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑑 ∈
Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁)) |
| 135 | 122, 134 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁)) |
| 136 | 135 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁)) |
| 137 | 68 | 3mix3d 1339 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜅 ∧ 𝑓 ∈ Pred(𝑇, 𝐶, 𝑐)) → (𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐)) |
| 138 | | pm2.27 42 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → (((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁) → 𝜁)) |
| 139 | 137, 138 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜅 ∧ 𝑓 ∈ Pred(𝑇, 𝐶, 𝑐)) → (((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁) → 𝜁)) |
| 140 | 139 | ralimdva 3152 |
. . . . . . . . . . . . . . . 16
⊢ (𝜅 → (∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁)) |
| 141 | 140 | ralimdv 3154 |
. . . . . . . . . . . . . . 15
⊢ (𝜅 → (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁)) |
| 142 | 141 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜁) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁)) |
| 143 | 136, 142 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) |
| 144 | 76, 114, 143 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁)) |
| 145 | | ssralv 4027 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑏} ⊆ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) → (∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
| 146 | 115, 145 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑒 ∈
(Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 147 | 80, 146 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑒 ∈
(Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 148 | 147 | ralimi 3073 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 149 | | ssralv 4027 |
. . . . . . . . . . . . . . . . . 18
⊢
(Pred(𝑅, 𝐴, 𝑎) ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) → (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
| 150 | 57, 149 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 151 | 148, 150 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 152 | 97 | ralbii 3082 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑒 ∈
{𝑏}∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑒 ∈ {𝑏} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒)) |
| 153 | | biidd 262 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 = 𝑏 → (𝑐 ≠ 𝑐 ↔ 𝑐 ≠ 𝑐)) |
| 154 | 124, 125,
153 | 3orbi123d 1437 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑏 → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) ↔ (𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐))) |
| 155 | | xpord3inddlem.11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = 𝑒 → (𝜓 ↔ 𝜒)) |
| 156 | 155 | equcoms 2019 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 = 𝑏 → (𝜓 ↔ 𝜒)) |
| 157 | 156 | bicomd 223 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑏 → (𝜒 ↔ 𝜓)) |
| 158 | 154, 157 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = 𝑏 → (((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒) ↔ ((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜓))) |
| 159 | 123, 158 | ralsn 4657 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑒 ∈
{𝑏} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜒) ↔ ((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜓)) |
| 160 | 152, 159 | bitri 275 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑒 ∈
{𝑏}∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜓)) |
| 161 | 160 | ralbii 3082 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑑 ∈
Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ {𝑏}∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜓)) |
| 162 | 151, 161 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜓)) |
| 163 | 162 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜓)) |
| 164 | | predpoirr 6322 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑅 Po 𝐴 → ¬ 𝑎 ∈ Pred(𝑅, 𝐴, 𝑎)) |
| 165 | 6, 164 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜅 → ¬ 𝑎 ∈ Pred(𝑅, 𝐴, 𝑎)) |
| 166 | | eleq1 2822 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑑 = 𝑎 → (𝑑 ∈ Pred(𝑅, 𝐴, 𝑎) ↔ 𝑎 ∈ Pred(𝑅, 𝐴, 𝑎))) |
| 167 | 166 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑑 = 𝑎 → (¬ 𝑑 ∈ Pred(𝑅, 𝐴, 𝑎) ↔ ¬ 𝑎 ∈ Pred(𝑅, 𝐴, 𝑎))) |
| 168 | 165, 167 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜅 → (𝑑 = 𝑎 → ¬ 𝑑 ∈ Pred(𝑅, 𝐴, 𝑎))) |
| 169 | 168 | necon2ad 2947 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜅 → (𝑑 ∈ Pred(𝑅, 𝐴, 𝑎) → 𝑑 ≠ 𝑎)) |
| 170 | 169 | imp 406 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜅 ∧ 𝑑 ∈ Pred(𝑅, 𝐴, 𝑎)) → 𝑑 ≠ 𝑎) |
| 171 | 170 | 3mix1d 1337 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜅 ∧ 𝑑 ∈ Pred(𝑅, 𝐴, 𝑎)) → (𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐)) |
| 172 | | pm2.27 42 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → (((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜓) → 𝜓)) |
| 173 | 171, 172 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜅 ∧ 𝑑 ∈ Pred(𝑅, 𝐴, 𝑎)) → (((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜓) → 𝜓)) |
| 174 | 173 | ralimdva 3152 |
. . . . . . . . . . . . . . 15
⊢ (𝜅 → (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜓) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓)) |
| 175 | 174 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)((𝑑 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜓) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓)) |
| 176 | 163, 175 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓) |
| 177 | | ssun2 4154 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑎} ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) |
| 178 | | ssralv 4027 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑎} ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) → (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
| 179 | 177, 178 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 180 | 56, 179 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 181 | | vex 3463 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑎 ∈ V |
| 182 | | neeq1 2994 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 = 𝑎 → (𝑑 ≠ 𝑎 ↔ 𝑎 ≠ 𝑎)) |
| 183 | | biidd 262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 = 𝑎 → (𝑒 ≠ 𝑏 ↔ 𝑒 ≠ 𝑏)) |
| 184 | | biidd 262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 = 𝑎 → (𝑓 ≠ 𝑐 ↔ 𝑓 ≠ 𝑐)) |
| 185 | 182, 183,
184 | 3orbi123d 1437 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑑 = 𝑎 → ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) ↔ (𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐))) |
| 186 | | xpord3inddlem.13 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝑑 → (𝜏 ↔ 𝜃)) |
| 187 | 186 | equcoms 2019 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 = 𝑎 → (𝜏 ↔ 𝜃)) |
| 188 | 187 | bicomd 223 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑑 = 𝑎 → (𝜃 ↔ 𝜏)) |
| 189 | 185, 188 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = 𝑎 → (((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏))) |
| 190 | 189 | 2ralbidv 3205 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = 𝑎 → (∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏))) |
| 191 | 181, 190 | ralsn 4657 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑑 ∈
{𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏)) |
| 192 | 180, 191 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏)) |
| 193 | 192 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏)) |
| 194 | 68 | 3mix3d 1339 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜅 ∧ 𝑓 ∈ Pred(𝑇, 𝐶, 𝑐)) → (𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐)) |
| 195 | | pm2.27 42 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → (((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) → 𝜏)) |
| 196 | 194, 195 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜅 ∧ 𝑓 ∈ Pred(𝑇, 𝐶, 𝑐)) → (((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) → 𝜏)) |
| 197 | 196 | ralimdva 3152 |
. . . . . . . . . . . . . . . 16
⊢ (𝜅 → (∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏)) |
| 198 | 197 | ralimdv 3154 |
. . . . . . . . . . . . . . 15
⊢ (𝜅 → (∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏)) |
| 199 | 198 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → (∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏)) |
| 200 | 193, 199 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏) |
| 201 | | ssralv 4027 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑎} ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) → (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
| 202 | 177, 201 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 203 | 84, 202 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 204 | 189 | 2ralbidv 3205 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = 𝑎 → (∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏))) |
| 205 | 181, 204 | ralsn 4657 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑑 ∈
{𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏)) |
| 206 | | biidd 262 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = 𝑐 → (𝑎 ≠ 𝑎 ↔ 𝑎 ≠ 𝑎)) |
| 207 | 206, 90, 91 | 3orbi123d 1437 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑐 → ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) ↔ (𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐))) |
| 208 | | xpord3inddlem.16 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 = 𝑓 → (𝜎 ↔ 𝜏)) |
| 209 | 208 | bicomd 223 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = 𝑓 → (𝜏 ↔ 𝜎)) |
| 210 | 209 | equcoms 2019 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑐 → (𝜏 ↔ 𝜎)) |
| 211 | 207, 210 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑐 → (((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) ↔ ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜎))) |
| 212 | 88, 211 | ralsn 4657 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑓 ∈
{𝑐} ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) ↔ ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜎)) |
| 213 | 212 | ralbii 3082 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑒 ∈
Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) ↔ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜎)) |
| 214 | 205, 213 | bitri 275 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑑 ∈
{𝑎}∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ {𝑐} ((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜎)) |
| 215 | 203, 214 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜎)) |
| 216 | 215 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜎)) |
| 217 | 107 | 3mix2d 1338 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜅 ∧ 𝑒 ∈ Pred(𝑆, 𝐵, 𝑏)) → (𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐)) |
| 218 | | pm2.27 42 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → (((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜎) → 𝜎)) |
| 219 | 217, 218 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜅 ∧ 𝑒 ∈ Pred(𝑆, 𝐵, 𝑏)) → (((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜎) → 𝜎)) |
| 220 | 219 | ralimdva 3152 |
. . . . . . . . . . . . . . 15
⊢ (𝜅 → (∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜎) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎)) |
| 221 | 220 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → (∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑐 ≠ 𝑐) → 𝜎) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎)) |
| 222 | 216, 221 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) |
| 223 | 176, 200,
222 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎)) |
| 224 | | ssralv 4027 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝑎} ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) → (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃))) |
| 225 | 177, 224 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 226 | 119, 225 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑑 ∈ {𝑎}∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) |
| 227 | 189 | 2ralbidv 3205 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = 𝑎 → (∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏))) |
| 228 | 181, 227 | ralsn 4657 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑑 ∈
{𝑎}∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏)) |
| 229 | | biidd 262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑏 → (𝑎 ≠ 𝑎 ↔ 𝑎 ≠ 𝑎)) |
| 230 | 229, 125,
126 | 3orbi123d 1437 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = 𝑏 → ((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) ↔ (𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐))) |
| 231 | | equcomi 2016 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑏 → 𝑏 = 𝑒) |
| 232 | | xpord3inddlem.14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = 𝑒 → (𝜂 ↔ 𝜏)) |
| 233 | | bicom1 221 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜂 ↔ 𝜏) → (𝜏 ↔ 𝜂)) |
| 234 | 231, 232,
233 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = 𝑏 → (𝜏 ↔ 𝜂)) |
| 235 | 230, 234 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑏 → (((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) ↔ ((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜂))) |
| 236 | 235 | ralbidv 3163 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 = 𝑏 → (∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) ↔ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜂))) |
| 237 | 123, 236 | ralsn 4657 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑒 ∈
{𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜏) ↔ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜂)) |
| 238 | 228, 237 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑑 ∈
{𝑎}∀𝑒 ∈ {𝑏}∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) ↔ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜂)) |
| 239 | 226, 238 | sylib 218 |
. . . . . . . . . . . . . 14
⊢
(∀𝑑 ∈
(Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜂)) |
| 240 | 239 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜂)) |
| 241 | 68 | 3mix3d 1339 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜅 ∧ 𝑓 ∈ Pred(𝑇, 𝐶, 𝑐)) → (𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐)) |
| 242 | | pm2.27 42 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → (((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜂) → 𝜂)) |
| 243 | 241, 242 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜅 ∧ 𝑓 ∈ Pred(𝑇, 𝐶, 𝑐)) → (((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜂) → 𝜂)) |
| 244 | 243 | ralimdva 3152 |
. . . . . . . . . . . . . 14
⊢ (𝜅 → (∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜂) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂)) |
| 245 | 244 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → (∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)((𝑎 ≠ 𝑎 ∨ 𝑏 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜂) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂)) |
| 246 | 240, 245 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) |
| 247 | 144, 223,
246 | 3jca 1128 |
. . . . . . . . . . 11
⊢ ((𝜅 ∧ ∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃)) → ((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂)) |
| 248 | 247 | ex 412 |
. . . . . . . . . 10
⊢ (𝜅 → (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂))) |
| 249 | 248 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜅 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → ((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂))) |
| 250 | | xpord3inddlem.i |
. . . . . . . . 9
⊢ ((𝜅 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑)) |
| 251 | 249, 250 | syld 47 |
. . . . . . . 8
⊢ ((𝜅 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑑 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑒 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})∀𝑓 ∈ (Pred(𝑇, 𝐶, 𝑐) ∪ {𝑐})((𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐) → 𝜃) → 𝜑)) |
| 252 | 47, 251 | sylbid 240 |
. . . . . . 7
⊢ ((𝜅 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑑∀𝑒∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃) → 𝜑)) |
| 253 | 252 | expcom 413 |
. . . . . 6
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → (𝜅 → (∀𝑑∀𝑒∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃) → 𝜑))) |
| 254 | 253 | a2d 29 |
. . . . 5
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → ((𝜅 → ∀𝑑∀𝑒∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → 𝜃)) → (𝜅 → 𝜑))) |
| 255 | 26, 254 | biimtrid 242 |
. . . 4
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → (∀𝑑∀𝑒∀𝑓(〈𝑑, 𝑒, 𝑓〉 ∈ Pred(𝑈, ((𝐴 × 𝐵) × 𝐶), 〈𝑎, 𝑏, 𝑐〉) → (𝜅 → 𝜃)) → (𝜅 → 𝜑))) |
| 256 | | xpord3inddlem.10 |
. . . . 5
⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜓)) |
| 257 | 256 | imbi2d 340 |
. . . 4
⊢ (𝑎 = 𝑑 → ((𝜅 → 𝜑) ↔ (𝜅 → 𝜓))) |
| 258 | 155 | imbi2d 340 |
. . . 4
⊢ (𝑏 = 𝑒 → ((𝜅 → 𝜓) ↔ (𝜅 → 𝜒))) |
| 259 | 93 | imbi2d 340 |
. . . 4
⊢ (𝑐 = 𝑓 → ((𝜅 → 𝜒) ↔ (𝜅 → 𝜃))) |
| 260 | | xpord3inddlem.17 |
. . . . 5
⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜌)) |
| 261 | 260 | imbi2d 340 |
. . . 4
⊢ (𝑎 = 𝑋 → ((𝜅 → 𝜑) ↔ (𝜅 → 𝜌))) |
| 262 | | xpord3inddlem.18 |
. . . . 5
⊢ (𝑏 = 𝑌 → (𝜌 ↔ 𝜇)) |
| 263 | 262 | imbi2d 340 |
. . . 4
⊢ (𝑏 = 𝑌 → ((𝜅 → 𝜌) ↔ (𝜅 → 𝜇))) |
| 264 | | xpord3inddlem.19 |
. . . . 5
⊢ (𝑐 = 𝑍 → (𝜇 ↔ 𝜆)) |
| 265 | 264 | imbi2d 340 |
. . . 4
⊢ (𝑐 = 𝑍 → ((𝜅 → 𝜇) ↔ (𝜅 → 𝜆))) |
| 266 | 255, 257,
258, 259, 261, 263, 265 | frpoins3xp3g 8140 |
. . 3
⊢ (((𝑈 Fr ((𝐴 × 𝐵) × 𝐶) ∧ 𝑈 Po ((𝐴 × 𝐵) × 𝐶) ∧ 𝑈 Se ((𝐴 × 𝐵) × 𝐶)) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶)) → (𝜅 → 𝜆)) |
| 267 | 5, 9, 13, 14, 15, 16, 266 | syl33anc 1387 |
. 2
⊢ (𝜅 → (𝜅 → 𝜆)) |
| 268 | 267 | pm2.43i 52 |
1
⊢ (𝜅 → 𝜆) |