MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun2OLD Structured version   Visualization version   GIF version

Theorem dffun2OLD 6508
Description: Obsolete version of dffun2 6507 as of 29-Dec-2024. (Contributed by NM, 29-Dec-1996.) Avoid ax-10 2138, ax-12 2172. (Revised by SN, 19-Dec-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dffun2OLD (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dffun2OLD
StepHypRef Expression
1 df-fun 6499 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
2 cotrg 6062 . . . 4 ((𝐴𝐴) ⊆ I ↔ ∀𝑦𝑥𝑧((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧))
3 alcom 2157 . . . . 5 (∀𝑦𝑥𝑧((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑥𝑦𝑧((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧))
4 vex 3448 . . . . . . . . 9 𝑦 ∈ V
5 vex 3448 . . . . . . . . 9 𝑥 ∈ V
64, 5brcnv 5839 . . . . . . . 8 (𝑦𝐴𝑥𝑥𝐴𝑦)
76anbi1i 625 . . . . . . 7 ((𝑦𝐴𝑥𝑥𝐴𝑧) ↔ (𝑥𝐴𝑦𝑥𝐴𝑧))
8 vex 3448 . . . . . . . 8 𝑧 ∈ V
98ideq 5809 . . . . . . 7 (𝑦 I 𝑧𝑦 = 𝑧)
107, 9imbi12i 351 . . . . . 6 (((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
11103albii 1824 . . . . 5 (∀𝑥𝑦𝑧((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
123, 11bitri 275 . . . 4 (∀𝑦𝑥𝑧((𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
132, 12bitri 275 . . 3 ((𝐴𝐴) ⊆ I ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
1413anbi2i 624 . 2 ((Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ) ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
151, 14bitri 275 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1540  wss 3911   class class class wbr 5106   I cid 5531  ccnv 5633  ccom 5638  Rel wrel 5639  Fun wfun 6491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-11 2155  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-fun 6499
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator