![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffun2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of dffun2 6579 as of 29-Dec-2024. (Contributed by NM, 29-Dec-1996.) Avoid ax-10 2141, ax-12 2177. (Revised by SN, 19-Dec-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dffun2OLD | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 6571 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
2 | cotrg 6135 | . . . 4 ⊢ ((𝐴 ∘ ◡𝐴) ⊆ I ↔ ∀𝑦∀𝑥∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 I 𝑧)) | |
3 | alcom 2159 | . . . . 5 ⊢ (∀𝑦∀𝑥∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 I 𝑧)) | |
4 | vex 3485 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
5 | vex 3485 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
6 | 4, 5 | brcnv 5900 | . . . . . . . 8 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
7 | 6 | anbi1i 624 | . . . . . . 7 ⊢ ((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) ↔ (𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧)) |
8 | vex 3485 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
9 | 8 | ideq 5870 | . . . . . . 7 ⊢ (𝑦 I 𝑧 ↔ 𝑦 = 𝑧) |
10 | 7, 9 | imbi12i 350 | . . . . . 6 ⊢ (((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
11 | 10 | 3albii 1820 | . . . . 5 ⊢ (∀𝑥∀𝑦∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
12 | 3, 11 | bitri 275 | . . . 4 ⊢ (∀𝑦∀𝑥∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
13 | 2, 12 | bitri 275 | . . 3 ⊢ ((𝐴 ∘ ◡𝐴) ⊆ I ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
14 | 13 | anbi2i 623 | . 2 ⊢ ((Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I ) ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) |
15 | 1, 14 | bitri 275 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ⊆ wss 3966 class class class wbr 5151 I cid 5586 ◡ccnv 5692 ∘ ccom 5697 Rel wrel 5698 Fun wfun 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-fun 6571 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |