| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffun2OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of dffun2 6524 as of 29-Dec-2024. (Contributed by NM, 29-Dec-1996.) Avoid ax-10 2142, ax-12 2178. (Revised by SN, 19-Dec-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dffun2OLD | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 6516 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 2 | cotrg 6083 | . . . 4 ⊢ ((𝐴 ∘ ◡𝐴) ⊆ I ↔ ∀𝑦∀𝑥∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 I 𝑧)) | |
| 3 | alcom 2160 | . . . . 5 ⊢ (∀𝑦∀𝑥∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 I 𝑧)) | |
| 4 | vex 3454 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 5 | vex 3454 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 6 | 4, 5 | brcnv 5849 | . . . . . . . 8 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 7 | 6 | anbi1i 624 | . . . . . . 7 ⊢ ((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) ↔ (𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧)) |
| 8 | vex 3454 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 9 | 8 | ideq 5819 | . . . . . . 7 ⊢ (𝑦 I 𝑧 ↔ 𝑦 = 𝑧) |
| 10 | 7, 9 | imbi12i 350 | . . . . . 6 ⊢ (((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
| 11 | 10 | 3albii 1821 | . . . . 5 ⊢ (∀𝑥∀𝑦∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
| 12 | 3, 11 | bitri 275 | . . . 4 ⊢ (∀𝑦∀𝑥∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
| 13 | 2, 12 | bitri 275 | . . 3 ⊢ ((𝐴 ∘ ◡𝐴) ⊆ I ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
| 14 | 13 | anbi2i 623 | . 2 ⊢ ((Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I ) ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) |
| 15 | 1, 14 | bitri 275 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ⊆ wss 3917 class class class wbr 5110 I cid 5535 ◡ccnv 5640 ∘ ccom 5645 Rel wrel 5646 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-fun 6516 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |