![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffun2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of dffun2 6585 as of 29-Dec-2024. (Contributed by NM, 29-Dec-1996.) Avoid ax-10 2141, ax-12 2178. (Revised by SN, 19-Dec-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dffun2OLD | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 6577 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
2 | cotrg 6141 | . . . 4 ⊢ ((𝐴 ∘ ◡𝐴) ⊆ I ↔ ∀𝑦∀𝑥∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 I 𝑧)) | |
3 | alcom 2160 | . . . . 5 ⊢ (∀𝑦∀𝑥∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 I 𝑧)) | |
4 | vex 3492 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
5 | vex 3492 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
6 | 4, 5 | brcnv 5907 | . . . . . . . 8 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
7 | 6 | anbi1i 623 | . . . . . . 7 ⊢ ((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) ↔ (𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧)) |
8 | vex 3492 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
9 | 8 | ideq 5877 | . . . . . . 7 ⊢ (𝑦 I 𝑧 ↔ 𝑦 = 𝑧) |
10 | 7, 9 | imbi12i 350 | . . . . . 6 ⊢ (((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
11 | 10 | 3albii 1819 | . . . . 5 ⊢ (∀𝑥∀𝑦∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
12 | 3, 11 | bitri 275 | . . . 4 ⊢ (∀𝑦∀𝑥∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑥𝐴𝑧) → 𝑦 I 𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
13 | 2, 12 | bitri 275 | . . 3 ⊢ ((𝐴 ∘ ◡𝐴) ⊆ I ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧)) |
14 | 13 | anbi2i 622 | . 2 ⊢ ((Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I ) ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) |
15 | 1, 14 | bitri 275 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ⊆ wss 3976 class class class wbr 5166 I cid 5592 ◡ccnv 5699 ∘ ccom 5704 Rel wrel 5705 Fun wfun 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-fun 6577 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |